Please do not adjust margins
ChemComm
Page 4 of 4
COMMUNICATION
Journal Name
7. J.-T. Li, J.-H. Yang, J.-F. Han and T.-S. Li, Green Chem., 2003, 5,
experiment did not affect the amount of benzaldehyde formation
(Figure S9). Thus, product degradation to the undesired aldehydes
must be a parallel photo-initiated process rather than a simple
hydrolysis reaction. This may proceed via the formation of the
corresponding iminoradicals,36 or due to the presence of singlet
oxygen formed upon excitation of Eosin Y.38 Combining all these
observations leads to the proposed reaction network shown in
Scheme 2.
433.
DOI: 10.1039/C7CC07059D
8. M. Oelgemöller, C. Jung and J. Mattay, Pure Appl. Chem.,
2007, 79
.
9. C. K. Prier, D. A. Rankic and D. W. C. MacMillan, Chem. Rev.,
2013, 113, 5322-5363.
10. J. M. R. Narayanam and C. R. J. Stephenson, Chem. Soc. Rev.,
2011, 40, 102-113.
11. T. P. Yoon, M. A. Ischay and J. Du, Nat. Chem., 2010, 2, 527-
532.
12. G. L. Closs and R. J. Miller, J. Am. Chem. Soc., 1981, 103
,
3586-3588.
We have shown how FlowNMR spectroscopy can be readily applied
to investigate photochemical reactions under realistic conditions to
provide valuable mechanistic insight. Substrate consumption profiles
showed the reaction to operate under saturation kinetics (photon
starvation), and product formation profiles revealed their relative
order of formation. Variation of light intensities and reaction
13. L. Bliumkin, R. Dutta Majumdar, R. Soong, A. Adamo, J. P. D.
Abbatt, R. Zhao, E. Reiner and A. J. Simpson, Environ. Sci.
Technol., 2016, 50, 5506-5516.
14. G. E. Ball, in Spectrosc. Prop. Inorg. Organomet. Compd., RSC,
2010, vol. 41, pp. 262-287.
15. B. Roig, E. Touraud and O. Thomas, Spectrochim. Acta Mol.
Biomol. Spectrosc., 2002, 58, 2925-2930.
atmospheres in conjunction with chopped illumination experiments 16. J. Luo, A. G. Oliver and J. Scott McIndoe, Dalton Trans., 2013,
42, 11312-11318.
17. R. Theron, Y. Wu, L. P. E. Yunker, A. V. Hesketh, I. Pernik, A. S.
gave insight into the mode of action of the Eosin Y photocatalyst
system, and showed aldehyde formation to occur from the imines via
a parasitic photocatalytic pathway. This information, not easily
accessible by alternative reaction monitoring techniques, will allow
swift optimisation of reaction conditions and assist the design of
improved photocatalytic systems in the future.
Weller and J. S. McIndoe, ACS Catalysis, 2016,
18. T. F. Page, Jr., Chem. Ind., 1969, 1462-1463.
6, 6911-6917.
19. A. Mills and C. O’Rourke, J. Org. Chem., 2015, 80, 10342-
10345.
20. C. Feldmeier, H. Bartling, K. Magerl and R. M. Gschwind,
Angew. Chem. Int. Ed., 2015, 54, 1347-1351.
21. C. Feldmeier, H. Bartling, E. Riedle and R. M. Gschwind, J.
Magn. Reson., 2013, 232, 39-44.
22. D. A. Foley, A. L. Dunn and M. T. Zell, Magn. Reson. Chem.,
2016, 54, 451-456.
Conflicts of interest
A.C. is an employee of Bruker UK Ltd., manufacturer and supplier of
NMR hard- and software solutions that have been used in this
research. The other authors declare no competing financial interest.
23. K. Albert, in On-Line LC-NMR And Related Techniques, John
Wiley & Sons, Ltd, 2003, pp. 1-22.
24. K. Albert and E. Bayer, TrAC, Trends Anal. Chem., 1988, 7,
288-293.
25. D. A. Foley, E. Bez, A. Codina, K. L. Colson, M. Fey, R. Krull, D.
Piroli, M. T. Zell and B. L. Marquez, Anal. Chem., 2014, 86
12008-12013.
,
Acknowledgements
26. D. A. Foley, M. T. Zell, B. L. Marquez and A. Kaerner, Pharm.
Technol., 2011, 11, S19.
27. M. Khajeh, M. A. Bernstein and G. A. Morris, Magn. Reson.
Chem., 2010, 48, 516-522.
This work was supported by a Research Grant from the Royal Society
(Y0603), the EPSRC Centre for Doctoral Training in Sustainable
Chemical Technologies (EP/L016354/1), the Dynamic Reaction
Monitoring Facility at the University of Bath (EP/P001475/1), Bruker
UK Ltd., and AstraZeneca. U.H. acknowledges the Centre for
28. M. V. Silva Elipe and R. R. Milburn, Magn. Reson. Chem.,
2016, 54, 437-443.
29. A. M. R. Hall, J. C. Chouler, A. Codina, P. T. Gierth, J. P. Lowe
Sustainable Chemical Technologies for
a Whorrod Research
and U. Hintermair, Catal. Sci. Tech., 2016, 6, 8406-8417.
Fellowship. The authors would like to thank Joshua Tibbets,
Dr Catherine Lyall and Dr Emma Emanuelsson from the University of
Bath for support and assistance with this project.
30. N. Zientek, K. Meyer, S. Kern and M. Maiwald, Chem. Ing.
Tech., 2016, 88, 698-709.
31. S. H. Smallcombe, S. L. Patt and P. A. Keifer, J. Magn. Reson.
A, 1995, 117, 295-303.
32. N. Emmanuel, C. Mendoza, M. Winter, C. R. Horn, A. Vizza, L.
Dreesen, B. Heinrichs and J.-C. M. Monbaliu, Org. Process
Res. Dev., 2017, DOI: 10.1021/acs.oprd.7b00212.
33. D. P. Hari and B. König, Org. Lett., 2011, 13, 3852-3855.
34. Y. Pan, S. Wang, C. W. Kee, E. Dubuisson, Y. Yang, K. P. Loh
and C.-H. Tan, Green Chem., 2011, 13, 3341-3344.
35. N. A. Romero and D. A. Nicewicz, Chem. Rev., 2016, 116
10075-10166.
36. A. T. Murray, M. J. Dowley, F. Pradaux-Caggiano, A.
Notes and references
‡ Total volume of FlowNMR apparatus = 3.7 mL. For a 100 mL
reaction volume the sample spends 4% of the reaction time outside
the reaction vessel (on average).
,
1. B. König, Chemical Photocatalysis, De Gruyter, 2013.
2. P. F. Heelis, Chem. Soc. Rev., 1982, 11, 15-39.
3. N. Hoffmann, Chem. Rev., 2008, 108, 1052-1103.
4. Y. Inoue, Chem. Rev., 1992, 92, 741-770.
Baldansuren, A. J. Fielding, F. Tuna, C. H. Hendon, A. Walsh,
G. C. Lloyd-Jones, M. P. John and D. R. Carbery, Angew.
Chem. Int. Ed. Engl., 2015, 54, 8997-9000.
5. K. Szacilowski, W. Macyk, A. Drzewiecka-Matuszek, M.
Brindell and G. Stochel, Chem. Rev., 2005, 105, 2647-2694.
37. A. Murray, Doctor of Philosophy, University of Bath, 2015.
38. F. Amat-Guerri, M. M. C. López-González, R. Martínez-Utrilla
6. V. Balzani, A. Credi and M. Venturi, ChemSusChem, 2008, 1,
and R. Sastre, J. Photochem. Photobiol. A: Chem., 1990, 53
199-210.
,
26-58.
4 | J. Name., 2012, 00, 1-3
This journal is © The Royal Society of Chemistry 20xx
Please do not adjust margins