RSC Advances
Paper
6 G. Akay, M. A. Birch and M. A. Bokhari, Biomaterials, 2004,
25, 3991–4000.
4. Conclusions
7 M. S. Silverstein, Prog. Polym. Sci., 2014, 39, 199–234.
8 M. S. Silverstein, Polymer, 2014, 55, 304–320.
9 J. Yan, X. Pan, M. Schmitt, Z. Wang, M. R. Bockstaller and
K. Matyjaszewski, ACS Macro Lett., 2016, 5, 661–665.
In this work, we showed that the macroporous polymer mate-
rials, polyHIPEs, can be obtained using simple processes. The
catalysts provide highly hierarchical pore system: spherical
pores are the rst level of porosity which are interconnected by
windows – the second level of porosity. Such interconnected
porous systems are ideal for catalysis applications due to
enhanced mass transfer rates. The polyHIPEs obtained were
graed with either carboxylic groups or tertiary amine groups to
introduce acid and base functionality. The characterisation data
conrmed the nature, quantity and strong bonding of the
functional groups to the polyHIPE structure. Strong binding,
this way, allows performing mutually opposite reactions in one
pot. The incorporation of the both acid and base functionalities
into the same polyHIPE material is challenging due to the
incompatibility of these functional groups, which requires
careful optimisation of synthesis procedures, which will be
studied in future.
An example of such a reaction was studied – acid-catalysed
hydrolysis of acetals followed by base-catalysed Knoevenagel
condensation reaction. A combination of base- and acid-
functionalised polyHIPE catalysts showed yield of 97% of the
nal product with good catalyst recyclability an no damage to
the polyHIPE structure was observed. A series of control
experiments demonstrated that the homogeneous acid, bases
as well as commercial resin-based materials provide a substan-
tially poorer result. The unique advantages of graed polyHIPE
catalysts come from macroporous interconnected structure
allowing for excellent mass-transfer rates and compartmental-
ised environment with active sites that allows the isolation of
otherwise incompatible acid and base functionalities simulta-
neously. Long term catalyst stability tests are needed for scale
up and industrial application, which will be studied in future.
˘
10 E. Yavuz, G. Bayramoglu, B. F. ¸Senkal and M. Y. Arıca, J.
Chromatogr. B: Anal. Technol. Biomed. Life Sci., 2009, 877,
1479–1486.
11 A. Khabibullin, K. Bhangaonkar, C. Mahoney, Z. Lu,
M. Schmitt, A. K. Sekizkardes, M. R. Bockstaller and
K. Matyjaszewski, ACS Appl. Mater. Interfaces, 2016, 8,
5458–5465.
12 G. Bayramoglu and M. Yakup Arica, Bioprocess Biosyst. Eng.,
2014, 37, 205–215.
13 P. Liu and Z. Su, Carbohydr. Polym., 2005, 62, 159–163.
14 D. Cummins, P. Wyman, C. J. Duxbury, J. Thies, C. E. Koning
and A. Heise, Chem. Mater., 2007, 19, 5285–5292.
15 L. Moine, H. Deleuze and B. Maillard, Tetrahedron Lett.,
2003, 44, 7813–7816.
16 F. Audouin, R. Larragy, M. Fox, B. O'Connor and A. Heise,
Biomacromolecules, 2012, 13, 3787–3794.
17 S. D. Kimmins, P. Wyman and N. R. Cameron, Polymer, 2014,
55, 416–425.
18 N. R. Cameron, D. C. Sherrington, I. Ando and H. Kurosu, J.
Mater. Chem., 1996, 6, 719–726.
19 V. Degirmenci, O. F. Erdem, A. Yilmaz, D. Michel and
D. Uner, Catal. Lett., 2007, 115, 79–85.
20 M. Ottens, G. Leene, A. Beenackers, N. Cameron and
D. C. Sherrington, Ind. Eng. Chem. Res., 2000, 39, 259–266.
21 E. Ruckenstein and L. Hong, Chem. Mater., 1992, 4, 1032–
1037.
22 S. D. Alexandratos, R. Beauvais, J. R. Duke and
B. S. Jorgensen, J. Appl. Polym. Sci., 1998, 68, 1911–1916.
23 P. Krajnc, J. F. Brown and N. R. Cameron, Org. Lett., 2002, 4,
2497–2500.
Conflicts of interest
24 B. C. Benicewicz, G. D. Jarvinen, D. J. Kathios and
B. S. Jorgensen, J. Radioanal. Nucl. Chem., 1998, 235, 31–35.
25 M. Y. Koroleva and E. V. Yurtov, Colloid J., 2003, 65, 40–43.
26 D. C. Sherrington, Chem. Commun., 1998, 2275–2286, DOI:
10.1039/A803757D.
The authors declare no conict of interest.
Acknowledgements
27 I. Pulko, J. Wall, P. Krajnc and N. R. Cameron, Chem.–Eur. J.,
2010, 16, 2350–2354.
EY and VD acknowledge the Scientic and Technological
Research Council of Turkey (TUBITAK) for nancial support
through International Post-Doctoral Research Fellowship
Programme.
28 O. Okay, Prog. Polym. Sci., 2000, 25, 711–779.
29 J. Behrendt and A. Sutherland, in Porous Polymers, ed. M. S.
Silverstein, N. R. Cameron and M. A. Hillmyer, John Wiley &
Sons, New Jersey, 2011, DOI: 10.1002/9780470929445.ch11.
30 I. Pulko and P. Krajnc, Macromol. Rapid Commun., 2012, 33,
1731–1746.
References
1 N. R. Cameron, Polymer, 2005, 46, 1439–1449.
2 H. F. Zhang and A. I. Cooper, So Matter, 2005, 1, 107–113.
31 L. Wu, V. Degirmenci, P. C. M. M. Magusin, B. M. Szyja and
E. J. M. Hensen, Chem. Commun., 2012, 48, 9492–9494.
3 I. Pulko, V. Smrekar, A. Podgornik and P. Krajnc, J. 32 L. Wu, V. Degirmenci, P. C. M. M. Magusin,
Chromatogr. A, 2011, 1218, 2396–2401.
4 I. A. Katsoyiannis and A. I. Zouboulis, Water Res., 2002, 36,
5141–5155.
5 M. Sokolsky-Papkov, K. Agashi, A. Olaye, K. Shakesheff and
A. J. Domb, Adv. Drug Delivery Rev., 2007, 59, 187–206.
N. J. H. G. M. Lousberg and E. J. M. Hensen, J. Catal.,
2013, 298, 27–40.
33 L. Wu, P. C. M. M. Magusin, V. Degirmenci, M. Li,
S. M. T. Almutairi, X. Zhu, B. Mezari and E. J. M. Hensen,
Microporous Mesoporous Mater., 2014, 189, 144–157.
8182 | RSC Adv., 2019, 9, 8175–8183
This journal is © The Royal Society of Chemistry 2019