To make a comparison, a series of control catalysts were used
to conduct the catalytic experiments. Pd–H TCPP is less efficient
I
C
>
2s(I) with 275 parameters. Crystal data for 1b:
48 4 r
H47.5Cd1.25N O19Pd, M = 1231.30, monoclinic, space group C2/c,
4
˚
˚
˚
a = 7.1564(9) A, b = 25.080(4) A, c = 31.192(3) A, b = 96.29(1)1, V =
to prompt the catalytic transformation, while PdCl2 cannot
prompt the catalytic transformation (Table 1, entries 9 and 10).
Moreover, when Pd/C was used as catalyst, only a small amount
of styrene was oxidized with very low acetophenone selectivity
3
ꢂ3
,
˚
5
564.7(12) A , Z = 4, T = 293(2), Rint = 0.0783, D
c
= 1.470 g cm
m = 7.036 mm , F(000) = 2486, GOF = 0.788, 8511 reflections
measured, 3941 unique. The final R = 0.0938, wR = 0.2092 for
638 observed reflections with I > 2s(I) with 284 parameters. Crystal
data for 1c: C64 8.5Pd, M = 1248.91, monoclinic, space
ꢂ1
1
2
1
H
41Cd1.25
4
N O
r
(
Table 1, entry 11). Despite Pd(OAc)
fully oxidized, the acetophenone selectivity is highly decreased
Table 1, entry 12). These results suggest that the catalytic activity
of 1 is superior to its corresponding components.
After a mixture of solid 1 and CH CN in the presence of
HClO was heated at 55 1C for 12 h under stirring, H and
2
can prompt styrene to be
˚
˚
˚
group C2/c, a = 7.2751(3) A, b = 25.591(2) A, c = 30.775(1) A,
˚
3
b = 96.478(4)1, V = 5692.9(5) A , Z = 4, T = 293(2), R = 0.0417,
int
ꢂ3
ꢂ1
D
c
= 1.457 g cm , m = 6.754 mm , F(000) = 2508, GOF = 1.070,
346 reflections measured, 4037 unique. The final R = 0.0969,
wR = 0.2234 for 2852 observed reflections with I > 2s(I) with
80 parameters.
(
9
1
2
3
2
4
2 2
O
1
(a) O. M. Yaghi, M. O’Keeffe, N. W. Ockwig, H. K. Chae,
M. Eddaoudi and J. Kim, Nature, 2003, 423, 705;
(b) M. J. Zaworotko, Nature, 2008, 451, 410; (c) K. Sanderson,
Nature, 2007, 448, 746; (d) A. K. Cheetham and C. N. R. Rao,
Science, 2007, 318, 58; (e) S. Kitagawa, Nature, 2006, 441, 584.
(a) S. Kitagawa, R. Kitaura and S.-i. Noro, Angew. Chem., Int.
Ed., 2004, 43, 2334; (b) M. Dinca
Int. Ed., 2008, 47, 6766.
(a) D. Bradshaw, J. B. Claridge, E. J. Cussen, T. J. Prior and
M. J. Rosseinsky, Acc. Chem. Res., 2005, 38, 273; (b) G. Ferey,
Chem. Soc. Rev., 2007, 37, 191; (c) S. Qiu and G. Zhu, Coord.
Chem. Rev., 2009, 253, 2891; (d) J.-R. Li, R. J. Kuppler and
H.-C. Zhou, Chem. Soc. Rev., 2009, 38, 1477; (e) J. Y. Lee,
O. K. Farha, J. Roberts, K. A. Scheidt, S. T. Nguyen and
J. T. Hupp, Chem. Soc. Rev., 2009, 38, 1450; (f) L. J. Murray,
M. Dinca and J. R. Long, Chem. Soc. Rev., 2009, 38, 1294;
(g) L. Ma, C. Abney and W. Lin, Chem. Soc. Rev., 2009, 38, 1248.
(a) J. W. W. Chang and P. W. H. Chan, Angew. Chem., Int. Ed.,
styrene were subsequently added into the hot filtrate, which
was heated at 55 1C for another 12 h. GC result indicates that
the mixture is unreactive. Additionally, H NMR spectro-
1
scopy indicates that no detectable Pd-TCPP ligand was
released into the solution. Catalyst 1 can be simply recovered
by filtration, which was subsequently used in the successive
runs without deteriorating the catalytic activity (Table 1, entry 13).
A PXRD pattern of the recovered solid suggests that the
structural integrity of the catalyst was maintained after the
catalytic experiment (supporting information Fig. S5w). All
these experiments proved that the present catalyst system is
heterogeneous in nature, and especially the catalytic activity
was highly depressed when homogeneous components were
used instead of solid 1.
2
3
˜
and J. R. Long, Angew. Chem.,
´
4
2
008, 47, 1138; (b) G. Jiang, J. Chen, H.-Y. Thu, J.-S. Huang,
N. Zhu and C.-M. Che, Angew. Chem., Int. Ed., 2008, 47, 6638;
c) C.-Y. Li, X.-B. Wang, X.-L. Sun, Y. Tang, J.-C. Zheng,
Z.-H. Xu, Y.-G. Zhou and L.-X. Dai, J. Am. Chem. Soc., 2007,
29, 1494; (d) G. Simonneaux, P. L. Maux, Y. Ferrand and
In summary, we have synthesized a new porous MOF 1,
II
which incorporates the functional bridging ligand with Pd
(
active sites in the porous solid 1 for the catalytic oxidation
reaction. Compound 1 undergoes interesting transformations
from the solvent inclusion to solvent free to solvent inclusion
frameworks. The framework-immobilized solid 1 not only
conferred the advantage of higher stability, but also showed
significant styrene oxidation activity, easier separation and
recyclability for the catalytic application.
1
J. R-Berthelot, Coord. Chem. Rev., 2006, 250, 2212; (e) The
Porphyrin Handbook, ed. K. M. Kadish, K. M. Smith and
R. Guilard, Academic Press, San Diego, 2000.
(a) M. E. Kosal, J.-H. Chou, S. R. Wilson and K. S. Suslick,
Nat. Mater., 2002, 1, 118; (b) M. Shmilovits, Y. Diskin-Posner,
M. Vinodu and I. Goldberg, Cryst. Growth Des., 2003, 3, 855;
5
(
c) S. Lipstman, S. Muniappan, S. George and I. Glodberg, Dalton
This work was financially supported by the NSF of China
Trans., 2007, 3273; (d) S. Lipstman, S. Muniappan, S. George and
I. Goldberg, CrystEngComm, 2006, 8, 601; (e) S. George and
I. Goldberg, Cryst. Growth Des., 2006, 6, 755; (f) A. K. Bar,
R. Chakrabarty, G. Mostafa and P. S. Mukherjee, Angew. Chem.,
Int. Ed., 2008, 47, 8455; (g) T. Ohmura, A. Usuki, K. Fukumori,
T. Ohta, M. Ito and K. Tatsumi, Inorg. Chem., 2006, 45, 7988.
(a) E. Deiters, V. Bulach and M. W. Hosseini, Chem. Commun.,
(
Grant Nos. 21073158 and J0830413), Zhejiang Provincial
Natural Science Foundation of China (Grant No. Z4100038)
and the Fundamental Research Funds for the Central
Universities (Grant No. 2010QNA3013).
6
2005, 3906; (b) L. Pan, S. Kelly, X. Huang and J. Li, Chem.
Commun., 2002, 2334.
Notes and references
z Yield: 38 mg (37.8%, based on Pd–H
4
TCPP). IR (KBr): n = 1605
7 (a) K. S. Suslick, P. Bhyrappa, J.-H. Chou, M. E. Kosal,
S. Nakagaki, D. W. Smithenry and S. R. Wilson, Acc. Chem.
Res., 2005, 38, 283; (b) A. M. Shultz, O. K. Farha, J. T. Hupp and
S. T. Nguyen, J. Am. Chem. Soc., 2009, 131, 4204.
8 A. L. Spek, PLATON, a multipurpose crystallographic tool,
Utrecht University, Utrecht, The Netherlands, 2001.
9 S. Horike, M. Dinca, K. Tamaki and J. R. Long, J. Am. Chem.
˜
(
(
m), 1586 (m), 1541 (m), 1401 (s), 1351 (w), 1177 (w), 1102 (w), 1014
s), 871 (w), 853 (w), 795 (w), 777 (w), 715 (w), 495 (w) cm
ꢂ1
.
6 r
y Crystal data for 1: C54H41.5Cd1.25N O11Pd, M = 1197.33, mono-
clinic, space group C2/c, a = 7.2953(1) A, b = 25.5761(7) A, c =
˚
˚
3
˚
˚
3
R
0.7597(6) A, b = 96.361(2)1, V = 5704.0(2) A , Z = 4, T = 293(2),
ꢂ3
ꢂ1
int = 0.0332, D
c
= 1.394 g cm , m = 6.756 mm , F(000) = 2406,
GOF = 1.024, 15 512 reflections measured, 4054 unique. The final
= 0.0776, wR = 0.1837 for 3395 observed reflections with I >
s(I) with 284 parameters. Crystal data for 1a: C48 Pd,
= 1033.12, monoclinic, space group C2/c, a = 7.217(2) A,
Soc., 2008, 130, 5854.
10 Y. H. Lin, I. D. Williams and P. Li, Appl. Catal., 1997, 50, 221.
R
2
M
1
2
´
11 (a) A. C. Bueno, A. O. de Souza and E. V. Gusevskaya,
H
25.5Cd1.25
N
O
4 8
˚
r
Adv. Synth. Catal., 2009, 351, 2491; (b) C. N. Cornell and
M. S. Sigman, J. Am. Chem. Soc., 2005, 127, 2796;
(c) J.-L. Wang, L.-N. He, C.-X. Miao and Y.-N. Li, Green Chem.,
2009, 11, 1317; (d) A. L. Miller II and N. B. Bowden, J. Org.
Chem., 2009, 74, 4834.
3
˚
˚
˚
b = 25.613(5) A, c = 30.660(3) A, b = 96.39(1)1, V = 5632.5(17) A ,
ꢂ3
ꢂ1
Z = 4, T = 293(2), Rint = 0.0585, D
F(000) = 2046, GOF = 0.908, 7339 reflections measured, 3942 unique.
The final R = 0.0886, wR = 0.1752 for 1498 observed reflections with
c
= 1.218 gcm , m = 6.713 mm
,
1
2
This journal is c The Royal Society of Chemistry 2011
Chem. Commun., 2011, 47, 5521–5523 5523