Communication
ChemComm
2
3
4
5
6
7
8
9
J. A. Kitchen, Coord. Chem. Rev., 2017, 340, 232–246.
S. V. Eliseeva and J.-C. G. B u¨ nzli, Chem. Soc. Rev., 2010, 39, 189–227.
J.-C. G. B u¨ nzli, Eur. J. Inorg. Chem., 2017, 5058–5063.
M. Hasegawa and A. Ishii, Coord. Chem. Rev., 2020, 421, 213458.
J.-C. G. B u¨ nzli, Coord. Chem. Rev., 2015, 293-294, 19–47.
A. J. Amoroso and S. J. A. Pope, Chem. Soc. Rev., 2015, 44, 4723–4742.
J.-C. G. B u¨ nzli, Trends Chem., 2019, 1, 751–762.
J.-C. G. B u¨ nzli, Chem. Rev., 2010, 110, 2729–2755.
1
1
1
0 Z. Zhang, Y. Chen, H. Chang, Y. Wang, X. Li and X. Zhu, J. Mater.
Chem. C, 2020, 8, 2205–2210.
1 O. Kotova, S. J. Bradberry, A. J. Savyasachi and T. Gunnlaugsson,
Dalton Trans., 2018, 47, 16377–16387.
2 J. Wang, Y. Suffren, C. Daiguebonne, S. Freslon, K. Bernot, G. Calvez,
L. Le Poll `e s, C. Roiland and O. Guillou, Inorg. Chem., 2019, 58,
2
659–2668.
1
1
3 T. Sun, Y. Gao, Y. Du, L. Zhou and X. Chen, Front. Chem., 2021, 8.
4 S. SeethaLekshmi, A. R. Ramya, M. L. P. Reddy and S. Varughese,
J. Photochem. Photobiol., C, 2017, 33, 109–131.
Fig. 6 – Quadruple steady-state emission from mixed monolayer LB film 15 H. Brunckova, E. Mudra, L. Rocha, E. Nassar, W. Nascimento, H. Kolev,
of Eu(1)
3
: Tb(1)
3
: Dy(1)
3
: Sm(1) (1 : 1 : 10 : 50). Insert: Mixed multi-layered
A. Kovalcikova, Z. Molcanova, M. Podobova and L. Medvecky, Appl. Surf.
Sci., 2021, 542, 148731.
6 T. Wang, P. Li and H. Li, ACS Appl. Mater. Interfaces, 2014, 6,
film under shortwave UV irradiation.
1
1
12915–12921.
7 M. Mart ´ı nez-Calvo, O. Kotova, M. E. M ¨o bius, A. P. Bell, T. McCabe,
J. J. Boland and T. Gunnlaugsson, J. Am. Chem. Soc., 2015, 137,
1983–1992.
18 M. A. Hern ´a ndez-Rodr ´ı guez, C. D. S. Brites, G. Antorrena, R. Pi n˜ ol,
R. Cases, L. P ´e rez-Garc ´ı a, M. Rodrigues, J. A. Plaza, N. Torras, I. D ´ı ez,
films, by comparing the relative signal area of the 3d5/2 peak to
the nitrogen 1s peak (and accounting for differences in photo-
electron escape depths), a ratio of approx. 1: 15 (Ln :N) was
obtained, indicating the presence of the (1: 3) M :L species on the
3
+
A. Millan and L. D. Carlos, Adv. Opt. Mater., 2020, 8, 2000312.
´
surface (Fig. S107–S109, ESI†). XPS was also carried out on the 19 H. Liu, T. Chu, Z. Rao, S. Wang, Y. Yang and W.-T. Wong, Adv. Opt.
Mater., 2015, 3, 1545–1550.
0 N. Marets, S. Kanno, S. Ogata, A. Ishii, S. Kawaguchi and M. Hasegawa,
ACS Omega, 2019, 4, 15512–15520.
dual (1 : 1) and quadruple (1 : 1 : 1 : 1) mixed films. Results con-
firmed the presence of multiple Ln ions (Fig. S103–S106, ESI†).
2
3+
To conclude, we have shown that using the amphiphilic 21 J. Ma and B. Yan, Dyes Pigm., 2018, 153, 266–274.
´
. L o´ pez-Mu n˜ oz, D. Repetto, T. Ito,
3
+
22 M. Clemente-Le o´ n, E. Coronado, A
ligand 1, we are able to generate bright, visibly emissive Ln
complexes that are suitable for LB film deposition, thus generating
T. Konya, T. Yamase, E. C. Constable, C. E. Housecroft, K. Doyle and
S. Graber, Langmuir, 2010, 26, 1316–1324.
surface immobilised luminescent materials. Furthermore, the near 23 Q.-M. Fu, H. Fu, L. Hu, L. Liu, S.-Z. Liu, Z.-L. Du and W.-Y. Wong,
J. Inorg. Organomet. Polym. Mater., 2012, 22, 97–104.
4 J. Ni, Q.-M. Fu, L. Liu, Z.-R. Gu, Z. Zhou, F.-B. Li, S.-X. Zhang, S.-
Z. Liu and Z.-L. Du, Thin Solid Films, 2013, 537, 247–251.
identical nature of the films has allowed us to generate rare
examples of multi-emissive ultra-thin-films by taking a mixed
2
amphiphile approach to LB film formation. In doing so we have 25 L. Liu, M. Chen, J. Yang, S.-Z. Liu, Z.-L. Du and W.-Y. Wong, J. Polym.
Sci., Part A: Polym. Chem., 2010, 48, 879–888.
6 D. E. Barry, J. A. Kitchen, L. Mercs, R. D. Peacock, M. Albrecht and
T. Gunnlaugsson, Dalton Trans., 2019, 48, 11317–11325.
observed monolayers with emission from two, three and four
lanthanide ions. To the best of our knowledge this study
2
presents the first examples of triple and quadruple emission 27 D. E. Barry, J. A. Kitchen, M. Albrecht, S. Faulkner and T. Gunnlaugsson,
Langmuir, 2013, 29, 11506–11515.
8 S. Sundaresan, J. A. Kitchen and S. Brooker, Inorg. Chem. Front.,
from LB monolayers. Such mixed amphiphile, multi-emissive,
monolayers have potential to generate new materials with a host
2
2020, 7, 2050–2059.
of advanced properties. For example, by incorporating different 29 D. J. Wales and J. A. Kitchen, Chem. Cent. J., 2016, 10, 72.
3
0 A. Galanti, O. Kotova, S. Blasco, C. J. Johnson, R. D. Peacock,
S. Mills, J. J. Boland, M. Albrecht and T. Gunnlaugsson, Chem. –
Eur. J., 2016, 22, 9709–9723.
analyte specific receptors on different amphiphilic complexes,
systems capable of detecting four distinct analytes are possible.
This study represents rare examples of multi-emissive surfaces, 31 A. T. O’Neil, N. Zhang, J. A. Harrison, S. M. Goldup and J. A. Kitchen,
Supramol. Chem., 2021, DOI: 10.1080/10610278.2021.1955120.
an area we are actively developing to generate more advanced
surface immobilised supramolecular materials.
3
3
3
3
3
2 R. Jagannathan and S. Soundararajan, J. Coord. Chem., 1979, 9,
1–35.
3
3 T. Le Borgne, J.-M. B ´e nech, S. Floquet, G. Bernardinelli, C. Aliprandini,
P. Bettens and C. Piguet, Dalton Trans., 2003, 3856–3868.
4 F. Renaud, C. Piguet, G. Bernardinelli, J.-C. G. B u¨ nzli and
G. Hopfgartner, Chem. – Eur. J., 1997, 3, 1646–1659.
5 M. Vijayakumar, K. Mahesvaran, D. K. Patel, S. Arunkumar and
K. Marimuthu, Opt. Mater., 2014, 37, 695–705.
6 G. A. Crosby and J. N. Demas, J. Phys. Chem. A, 1971, 75, 991–1024.
Conflicts of interest
There are no conflicts to declare.
Notes and references
37 A. S. Chauvin, F. Gumy, D. Imbert and J. C. G. B u¨ nzli, Spectrosc. Lett.,
004, 37, 517–532.
D. B. Amabilino, D. K. Smith and J. W. Steed, Chem. Soc. Rev., 2017, 38 M. C. Petty, In Langmuir-Blodgett Films: An Introduction, Cambridge
6, 2404–2420. University Press: Cambridge, 1996, pp. 39–64.
2
1
4
Chem. Commun.
This journal is © The Royal Society of Chemistry 2021