Please do not adjust margins
ChemComm
DOI: 10.1039/C5CC04432D
COMMUNICATION
Journal Name
recorded after the reaction showed morphological changes, with a In summary, through the result of hydrodechlorination reaction
growth in the size of the nanoparticles. Detailed scanning reaction we could clearly conclude the leaching of Pd species; these
transmission electron microscopy (STEM) energy dispersive X-ray enhance the catalytic activity by interacting with the Au
spectroscopy (EDX) measurements showed that most of the nanoparticles in Au/Pd bimetallic nanoparticles generated in situ
particles are polymorphological with non-uniform lattice pattern. and the heteroatomic gold drives the reaction mechanism from
However, it revealed the existence of some of bimetallic homogeneous to heterogeneous. This phenomenon provides a
nanoparticles containing various amounts of Au and Pd (Table S2, good illustration of a bimetallic effect in which one metal dopes
Figure S5, ESI). These particles show uniform lattice pattern and another metal. We also found that Au plays two important roles.
single crystallinity but possessing two metals (Figure 2). This The first is to capture and stabilize Pd, and the second is to produce
supports our belief that the enhanced catalytic activity of Pd is due a bimetallic system that catalyzes the reaction by a different
to the dilution of surface Pd atoms by gold in forming these very mechanism.
few numbers of Au rich Au/Pd bimetallic nanoparticles in situ.
Trigueiro, A. Tolstogouzov, O. M. N. D. Teodoro, R. Zboril, R.
S. Varma, P. S. Branco, Green Chem., 2014, 16, 3494.
8
a) S. Mukhopadhyay, G. Rothenberg, D. Gitis, H. Wiener, Y.
Sasson, J. Chem. Soc. Perkin Trans. 2, 1999, 2481.
Notes and references
9
a) J. M. Richardson, C. W. Jones, Adv. Synth. Catal., 2006,
348, 1207; b) M. B. Thathagar, P. J. Kooyman, R. Boerleider,
E. Jansen, C. J. Elsevier, G. Rothenberg, Adv. Synth. Catal.,
2005, 347, 1965; C) S. S. Prockl, W. Kleist, M. A. Gruber, K.
Kohler, Angew. Chem. Int. Ed., 2004, 43, 1881.
1
a) R. F. Heck, J. P Nolley, J. Org. Chem., 1972, 37, 2320; b) K.
Mori, T. Mizoroki, A. Ozaki, Bull. Chem. Soc. Jpn., 1973, 46
505; d) R. F. Heck, Acc. Chem. Res., 1979, 12, 146.
a) N. Miyaura, A. Suzuki, Chem. Rev., 1995, 95, 2457; b) F.
,
1
2
Fernandez, B. Cordero, J. Durand, G. Muller, F. Malbosc, Y. 10 a) C. W. Yi, K. Luo, T. Wei, D. W. Goodman, J. Phys. Chem. B,
Kihn, E. Teumaa, M. Gomez, Dalton, 2007, 5572; c) D.
Sanhes, E. Raluy, S. Retory, N. Saffon, E. Teumaa, M. Gomez,
Dalton, 2010, 39, 9719.
a) N. T. S. Phan, M. Van Der Sluys, C. W. Jones, Adv. Synth.
Catal. 2006, 348, 609; b) R. L. Augustine, S. T. O’Leary, J. Mol.
Catal. A: Chem., 1995, 95, 277; c) R. L. Augustine, S. T.
O’Leary, J. Mol. Catal., 1992, 72, 229; d) S. Jansat, J. Durand,
I. Favier, F. Malbosc, C. Pradel, E. Teuma, M. Gomez,
2005, 109, 18535; b) F. Gao, D. W. Goodman, Chem. Soc.
Rev., 2012, 41, 8009.
11 a) J. Xu, T. White, P. Li, C. H. He, J. G. Yu, W. K. Yuan, Y. –F.
Han, J. Am. Chem. Soc., 2010, 132, 10398; b) T. Gracia, S.
Agouram, A. Dejoz, J. F. Sanchez-Royo, L. Torrente-Murciano,
3
4
B.
Solsona,
Catal.
Today,
2014,
doi:
10.1016/j.cattod.2014.03.039; c) M. O. Nutt, K. N. Heck, P.
Alvarez, M. S. Wong, Appl. Catal. B, 2006, 69, 115; d) A.
Sárkány, O. Geszti, G. Sáfrán, Appl. Catal. A, 2008, 350, 157;
e) N. E. Kolli, L. Delannoy, C. J. Louis, Catal., 2013, 297, 79; f)
T. Longfei, W. Xiaoli, C. Dong, L. Huiyu, M. Xianwei, T.
ChemCatChem, 2009,
P. Serp, M. Gomez, E. Teuma, ChemCatChem, 2011,
a) M. T. Reetz, E. Westermann, Angew. Chem. Int. Ed. 2000,
, 165; b) M. T. Reetz, G. Lohmer, R. Schwickardi, Angew.
Chem. Int. Ed. 1998, 37, 481; c) A. H. M. de Vries, J. M. C. A.
Mulders, J. H. M. Mommers, H. J. W. Hendrickx, J. G. de 12 a) X. Wei, X. F. Yang, A. Q. Wang, L. Li, X. Y. Liu; T. Zhang, J.
1, 244; e) L. Rodriguez-Perez, C. Pradel,
3, 749.
39
Fangqiong, J. Mater. Chem. A, 2013,
1, 10382; g) J. Long, H.
Liu, S. Wu, S. Liao, Y. Li, ACS Catal., 2013,
3, 647.
Vries, Org. Lett., 2003,
Elshof, G. Rothenberg, Angew. Chem. Int. Ed., 2006, 45
886; e) L. D. Pachon, G. Rothenberg, Appl. Organometal.
5
, 3285; d) M. B. Thathagar, J. E. ten
Phys. Chem., 2012, 116, 6222; b) S. Carrettin, P. McMorn, P.
Johnston, K. Griffin, C. J. Kielyc, G. J. Hutchings, Phys. Chem.
Chem. Phys., 2003, 5, 1329.
,
2
Chem., 2008, 22, 288; f) J. Durand, E. Teuma, M. Gómez, Eur. 13 N. Toshima, Macromol. Sci. Chem., 1990, 27, 1225.
J. Inorg. Chem., 2008, 3577; g) I. Favier, D. Madec, E. Teuma, 14 M. Chen, D. Kumar, C.-W. Yi, D. W. Goodman, Science, 2005,
M. Gomez, Curr. Org. Chem., 2011, 15, 3127.
a) A. V. Gaikwad, A. Holyuigre, M. B. Thathagar, J. E. ten 15 H. Zhang, T. Watanabe, M. Okumura, M. Haruta, N. Toshima,
Elshof, G. Rothenberg, Chem. Eur. J., 2007, 13, 6908; b) S.
Nat. Mater. 2012, 11, 49.
Mac-Quarrie, J. H. Horton, J. Barnes, K. McEleney, H. P. 16 a) N. K. Chaki, H. Tsunoyama, Y. Nigishi, H. Sakurai, T.
310, 291.
5
Loock, C. M. Crudden, Angew. Chem. Int. Ed., 2008, 47, 3279;
c) K. Kohler, R. G. Heidenreich, S. S. Soomro, S. S. Prockl, Adv.
Synth. Catal., 2008, 350, 2930; d) K. Q. Yu, W. Sommer, J. M.
Richardson, M. Weck, C. W. Jones, Adv. Synth. Catal., 2005,
Tsukuda, J. Phys. Chem. C, 2007, 111, 4885; b) S. S. Yudha, R.
N. Dhital, H. Sakurai, Tetrahedron Lett, 2011, 52, 2633; c) O.
Sophiphun, J. Wittayakun, R. N. Dhital, S. Haesuwannakij, A.
Murugadoss, H. Sakurai, Aust. J. Chem. 2012, 65, 1238; d) A.
Murugadoss, K. Okumura, H. Sakurai, J. Phys. Chem. C, 2012,
116, 26776; e) D. Wang, A. Villa, F. Porta, L. Prati, D. Su, J.
Phys. Chem. C, 2008, 112, 8617; f) C. Rossy, J. Majimel, E.
Fouquet, C. Delacôte, M. Boujtita, C. Labrugère, M. Tréguer-
Delapierre, F. X. Felpin, Chem. Eur. J., 2013, 19, 14024; g) H.
B. Liu, U. Pal, A. Medina, C. Maldonado, J. A. Ascencio, Phys.
Rev. B, 2005, 71, 075403; h) J. Cai, Y. Y. Ye, Phys. Rev. B,
1996, 54, 8398; i) M. L. Wu, D. H. Chen, T. C. Huang,
Langmuir, 2001, 17, 3877.
347, 161.
6
7
a) S. Higashibayashi, H. Sakurai, Chem. Lett., 2007, 36, 18; b)
A. F. G. Masud Reza, S. Higashibayashi, H. Sakurai, Chem.
Asian J., 2009, 4, 1329; c) S. Higashibayashi, A. F. G. Masud
Reza, H. Sakurai, J. Org. Chem. 2010, 75, 4626; d) M.
Yamanaka, M. Morishima, Y. Shibata, H. Higashibayashi, H.
Sakurai, Organometallics, 2014, 33, 3060.
a) N. Hoshiya, M. Shimoda, H. Yoshikawa, S. Shuto, M.
Arisawa, J. Am. Chem. Soc. 2010, 132, 7270; b) B. Yuan, Y.
Pan, Y. Li, B. Yin, H. Jiang, Angew. Chem. Int. Ed. 2010, 49
,
17 a) R. N. Dhital, C. Kamonsatikul, E. Somsook, K. Bobuatong,
M. Ehara, S. Karanjit, H. Sakurai, J. Am. Chem. Soc. 2012,
134, 20250. b) R. N. Dhital, H. Sakurai, Chem. Lett. 2012, 41,
4
5
054; c) L. Djakovitch, K. Koehler, J. Chem. Soc. 2001, 123,
990; d) K. Mori, K. Yamaguchi, T. Hara, T. Mizugaki, K.
Ebitani, K. Kaneda, J. Chem. Soc. 2002, 124, 11572; e) K.
630.
Mori, T. Hara, M. Oshiba, T. Mizugaki, K. Ebitani, K. Kaneda, 18 B. Boekfa, E. Pahl, N. Gaston, H. Sakurai, J. Limtrakul, M.
New J. Chem. 2005, 29, 1174; f) R. J. White, R. Luque, V. L.
Budarin, J. H. Clark, Chem. Soc. Rev., 2009, 38, 481; g) S. Sá,
M. B. Gawande, A. Velhinho, J. P. Veiga, N. Bundaleski, J.
Ehara, J. Phys. Chem. C, 2014, 118, 22188.
4
| J. Name., 2012, 00, 1-3
This journal is © The Royal Society of Chemistry 20xx
Please do not adjust margins