Journal of the American Chemical Society
Article
1
1
(
9, 15802−15814. (e) Mehta, V. P.; Punji, B. RSC Adv. 2013, 3, 11957−
1986. (f) Sun, C.-L.; Shi, Z.-J. Chem. Rev. 2014, 114, 9219−9280.
Commun. 2011, 47, 10629−10631. (d) Doni, E.; Zhou, S.; Murphy, J. A.
Molecules 2015, 20, 1755−1774.
(11) For other reaction types, see: (a) Zhang, H.; Shi, R.; Ding, A.; Lu,
L.; Chen, B.; Lei, A. Angew. Chem., Int. Ed. 2012, 51, 12542−12545.
(b) Drapeau, M. P.; Fabre, I.; Grimaud, L.; Ciofini, I.; Ollevier, T.;
Taillefer, M. Angew. Chem., Int. Ed. 2015, 54, 10587−10591.
(12) (a) Studer, A.; Curran, D. P. Angew. Chem., Int. Ed. 2011, 50,
6) For recent reviews and books on transition-metal-catalyzed cross-
coupling reactions, see: (a) Alberico, D.; Scott, M. E.; Lautens, M. Chem.
Rev. 2007, 107, 174−238. (b) Chen, X.; Engle, K. M.; Wang, D.-H.; Yu,
J.-Q. Angew. Chem., Int. Ed. 2009, 48, 5094−5115. (c) Modern Arylation
Methods; Ackermann, L., Ed.; Viley-VCH: Weinheim, 2009. (d) Lyons,
T. W.; Sanford, M. S. Chem. Rev. 2010, 110, 1147−1169. (e) Lei, A.; Liu,
W.; Liu, C.; Chen, M. Dalton Trans. 2010, 39, 10352−10361. (f) Jana,
R.; Pathak, T. P.; Sigman, M. S. Chem. Rev. 2011, 111, 1417−1492.
5
(
018−5022. (b) Studer, A.; Curran, D. P. Nat. Chem. 2014, 6, 765−773.
c) Zhou, S.; Anderson, G. M.; Mondal, B.; Doni, E.; Ironmonger, V.;
Kranz, M.; Tuttle, T.; Murphy, J. A. Chem. Sci. 2014, 5, 476−482.
(
d) Murphy, J. A. J. Org. Chem. 2014, 79, 3731−3746. (e) Zhou, S.;
(
g) Metal-Catalyzed Cross-Coupling Reactions and More; de Meijere, A.,
Brase, S., Oestereich, M., Eds.; Wiley-VCH: Weinheim, 2014.
7) For intermolecular cross-coupling reactions, see: (a) Liu, W.; Cao,
Doni, E.; Anderson, G. M.; Kane, R. G.; MacDougall, S. W.;
̈
Ironmonger, V. M.; Tuttle, T.; Murphy, J. A. J. Am. Chem. Soc. 2014,
(
1
5
36, 17818−17826. (f) Yi, H.; Jutand, A.; Lei, A. Chem. Commun. 2015,
H.; Zhang, H.; Zhang, H.; Chung, K. H.; He, C.; Wang, H.; Kwong, F. Y.;
Lei, A. J. Am. Chem. Soc. 2010, 132, 16737−16740. (b) Sun, C.-L.; Li, H.;
Yu, D.-G.; Yu, M.; Zhou, X.; Lu, X.-Y.; Huang, K.; Zheng, S.-F.; Li, B.-J.;
Shi, Z.-J. Nat. Chem. 2010, 2, 1044−1049. (c) Shirakawa, E.; Itoh, K.-i.;
Higashino, T.; Hayashi, T. J. Am. Chem. Soc. 2010, 132, 15537−15539.
1, 545−548. (g) Patil, M. J. Org. Chem. 2016, 81, 632−639. (h) Barham,
J. P.; Coulthard, G.; Kane, R. G.; Delgado, N.; John, M. P.; Murphy, J. A.
Angew. Chem., Int. Ed. 2016, 55, 4492−4496.
(13) DMEDA has also been employed in transition-metal catalyzed
C−H arylation reactions as a ligand, see: (a) Liu, W.; Cao, H.; Xin, J.; Jin,
L.; Lei, A. Chem. - Eur. J. 2011, 17, 3588−3592. (b) Liu, W.; Cao, H.; Lei,
A. Angew. Chem., Int. Ed. 2010, 49, 2004−2008.
(
d) Qiu, Y.; Liu, Y.; Yang, K.; Hong, W.; Li, Z.; Wang, Z.; Yao, Z.; Jiang,
S. Org. Lett. 2011, 13, 3556−3559. (e) Yong, G.-P.; She, W.-L.; Zhang,
Y.-M.; Li, Y.-Z. Chem. Commun. 2011, 47, 11766−11768. (f) Tanimoro,
K.; Ueno, M.; Takeda, K.; Kirihata, M.; Tanimori, S. J. Org. Chem. 2012,
(14) (a) Connors, K. A. Chemical Kinetics: The Study of Reaction Rates
in Solution; Wiley-VCH: New York, 1990. (b) Blackmond, D. G. Angew.
Chem., Int. Ed. 2005, 44, 4302−4320. (c) Mathew, J. S.; Klussmann, M.;
Iwamura, H.; Valera, F.; Futran, A.; Emanuelsson, E. A. C.; Blackmond,
D. G. J. Org. Chem. 2006, 71, 4711−4722.
7
7, 7844−7849. (g) Liu, H.; Yin, B.; Gao, Z.; Li, Y.; Jiang, H. Chem.
Commun. 2012, 48, 2033−2035. (h) Chen, W.-C.; Hsu, Y.-C.; Shih, W.-
C.; Lee, C.-Y.; Chuang, W.-H.; Tsai, Y.-F.; Chen, P. P.-Y.; Ong, T.-G.
Chem. Commun. 2012, 48, 6702−6704. (i) Ng, Y. S.; Chan, C. S.; Chan,
K. S. Tetrahedron Lett. 2012, 53, 3911−3914. (j) A, S.; Liu, X.; Li, H.; He,
C.; Mu, Y. Asian J. Org. Chem. 2013, 2, 857−861. (k) Zhao, H.; Shen, J.;
Guo, J.; Ye, R.; Zeng, H. Chem. Commun. 2013, 49, 2323−2325. (l) Liu,
W.; Tian, F.; Wang, X.; Yu, H.; Bi, Y. Chem. Commun. 2013, 49, 2983−
(15) In some studies, the reaction progress was monitored (see refs 7a
and 7b); however, kinetic order study and kinetic analysis have not been
done.
(16) In the framework of initiation mechanism 3, a possible pathway for
the generation of 3 in the cross-coupling reaction is HAT between 4-
methoxyphenyl radical and benzene (see ref 12e). This pathway
produces phenyl radical, which then undergoes the coupling reaction
with benzene to produce biphenyl in an equal amount to 3. In the model
reaction, this is not the predominant pathway, because only 1.9% of
biphenyl was observed as byproduct.
(17) In a control experiment conducted at 80 °C in the absence of
(18) Gans-Eichler, T.; Gudat, D.; Nieger, M. Angew. Chem., Int. Ed.
2002, 41, 1888−1891.
(19) (a) Dhineshkumar, J.; Lamani, M.; Alagiri, K.; Prabhu, K. R. Org.
Lett. 2013, 15, 1092−1095. (b) Yan, Y.; Xu, Y.; Niu, B.; Xie, H.; Liu, Y. J.
Org. Chem. 2015, 80, 5581−5587.
2
2
985. (m) Li, B.; Qin, X.; You, J.; Cong, X.; Lan, J. Org. Biomol. Chem.
013, 11, 1290−1293. (n) Dewanji, A.; Murarka, S.; Curran, D. P.;
Studer, A. Org. Lett. 2013, 15, 6102−6105. (o) Sharma, S.; Kumar, M.;
Kumar, V.; Kumar, N. Tetrahedron Lett. 2013, 54, 4868−4871. (p) Song,
Q.; Zhang, D.; Zhu, Q.; Xu, Y. Org. Lett. 2014, 16, 5272−5274.
(
q) Ghosh, D.; Lee, J.-Y.; Liu, C.-Y.; Chiang, Y.-H.; Lee, H. M. Adv.
Synth. Catal. 2014, 356, 406−410. (r) Zhu, Y.-W.; Yi, W.-B.; Qian, J.-L.;
Cai, C. ChemCatChem 2014, 6, 733−735. (s) Cuthbertson, J.; Gray, V.
J.; Wilden, J. D. Chem. Commun. 2014, 50, 2575−2578. (t) Bhakuni, B.
S.; Yadav, A.; Kumar, S.; Kumar, S. New J. Chem. 2014, 38, 827−836.
(
6
(
u) Wu, Y.; Choy, P. Y.; Kwong, F. Y. Org. Biomol. Chem. 2014, 12,
820−6823. (v) Liu, W.; Xu, L.; Bi, Y. RSC Adv. 2014, 4, 44943−44947.
w) Liu, W.; Liu, R.; Bi, Y. Tetrahedron 2015, 71, 2622−2628. (x) Gao,
Y.; Tang, P.; Zhou, H.; Zhang, W.; Yang, H.; Yan, N.; Hu, G.; Mei, D.;
Wang, J.; Ma, D. Angew. Chem., Int. Ed. 2016, 55, 3124−3128. (y) Paira,
R.; Singh, B.; Hota, P. K.; Ahmed, J.; Sau, S. C.; Johnpeter, J. P.; Mandal,
S. K. J. Org. Chem. 2016, 81, 2432−2441.
(21) (a) Zhao, Y.; Truhlar, D. G. Theor. Chem. Acc. 2008, 120, 215−
241. (b) Zhao, Y.; Truhlar, D. G. Acc. Chem. Res. 2008, 41, 157−167.
(
8) For intramolecular cross-coupling reactions, see: (a) Sun, C.-L.;
Gu, Y.-F.; Huang, W.-P.; Shi, Z.-J. Chem. Commun. 2011, 47, 9813−
9815. (b) Roman, D. S.; Takahashi, Y.; Charette, A. B. Org. Lett. 2011,
(23) Park, J.; Lin, M. C. J. Phys. Chem. A 1997, 101, 14−18.
1
3, 3242−3245. (c) Bhakuni, B. S.; Kumar, A.; Balkrishna, S. J.; Sheikh, J.
A.; Konar, S.; Kumar, S. Org. Lett. 2012, 14, 2838−2841. (d) De, S.;
Ghosh, S.; Bhunia, S.; Sheikh, J. A.; Bisai, A. Org. Lett. 2012, 14, 4466−
4469. (e) Wu, Y.; Wong, S. M.; Mao, F.; Chan, T. L.; Kwong, F. Y. Org.
̈
Lett. 2012, 14, 5306−5309. (f) Masters, K.-S.; Brase, S. Angew. Chem.,
Int. Ed. 2013, 52, 866−869. (g) De, S.; Mishra, S.; Kakde, B. N.; Dey, D.;
Bisai, A. J. Org. Chem. 2013, 78, 7823−7844.
(
́
9) For photoirradiation-induced cross-coupling, see: (a) Buden, M.
E.; Guastavino, J. F.; Rossi, R. A. Org. Lett. 2013, 15, 1174−1177.
b) Cheng, Y.; Gu, X.; Li, P. Org. Lett. 2013, 15, 2664−2667. (c) Zheng,
X.; Yang, L.; Du, W.; Ding, A.; Guo, H. Chem. - Asian J. 2014, 9, 439−
42. (d) Kawamoto, T.; Sato, A.; Ryu, I. Org. Lett. 2014, 16, 2111−2113.
e) Xu, Z.; Gao, L.; Wang, L.; Gong, M.; Wang, W.; Yuan, R. ACS Catal.
015, 5, 45−50.
10) For Heck-type reactions, see: (a) Shirakawa, E.; Zhang, X.;
(
4
(
2
(
Hayashi, T. Angew. Chem., Int. Ed. 2011, 50, 4671−4674. (b) Sun, C.-L.;
Gu, Y.-F.; Wang, B.; Shi, Z.-J. Chem. - Eur. J. 2011, 17, 10844−10847.
(
c) Rueping, M.; Leiendecker, M.; Das, A.; Poisson, T.; Bui, L. Chem.
J
J. Am. Chem. Soc. XXXX, XXX, XXX−XXX