10.1002/chem.201801305
Chemistry - A European Journal
COMMUNICATION
abstraction, 2-F+, from reaction of 2[B(C6F5)4]2 with CsF or NBu4F
were unsuccessful, showing only PhPF2 and a broadened peak in
the same region as 22+ (Figure S19). Despite this inability to
isolate 2-F+, computations reveal that it would adopt a pseudo
square-based pyramidal geometry with 12-valence electrons
about the P(III) center (Figure S20) and that subsequent reaction
with a silylium ion to regenerate 22+ is thermodynamically downhill
by 6.8 kcal/mol.
J. Fluorine Chem. 2015, 179, 14-22; c) H. Amii, K. Uneyama, Chem. Rev.
2009, 109, 2119-2183.
[2]
[3]
a) M. K. Whittlesey, E. Peris, ACS Catalysis 2014, 4, 3152-3159; b) J.-Y.
Hu, J.-L. Zhang, in Organometallic Fluorine Chemistry (Eds.: T. Braun,
R. P. Hughes), Springer International Publishing, Cham, 2015, pp. 143-
196.
a) C. Douvris, C. M. Nagaraja, C. H. Chen, B. M. Foxman, O. V. Ozerov,
J. Am. Chem. Soc. 2010, 132, 4946; b) C. Douvris, O. V. Ozerov, Science
2008, 321, 1188; c) T. Stahl, H. F. T. Klare, M. Oestreich, ACS Catalysis
2013, 3, 1578-1587; d) M. Klahn, C. Fischer, A. Spannenberg, U.
Rosenthal, I. Krossing, Tetrahedron Lett. 2007, 48, 8900; e) R. Panisch,
M. Bolte, T. Müller, J. Am. Chem. Soc. 2006, 128, 9676; f) M. Ahrens, G.
Scholz, T. Braun, E. Kemnitz, Angew. Chem. Int. Ed. 2013, 52, 5328-
5332; g) W. Gu, M. R. Haneline, C. Douvris, O. V. Ozerov, J. Am. Chem.
Soc. 2009, 131, 11203; h) B. Pan, F. P. Gabbai, J. Am. Chem. Soc. 2014,
136, 9564-9567; i) R. Maskey, M. Schädler, C. Legler, L. Greb, Angew.
Chem. Int. Ed., In press.
22+
3C-F
R
R
3Si-F
-6.8
-22.9
Si]+
2-F+
C]+
[R3
R
[R3
-13.4
[4]
a) C. B. Caputo, L. J. Hounjet, R. Dobrovetsky, D. W. Stephan, Science
2013, 341, 1374-1377; b) J. Zhu, M. Pérez, C. B. Caputo, D. W. Stephan,
Angew. Chem. Int. Ed. 2016, 55, 1417-1421; c) J. M. Bayne, M. H.
Holthausen, D. W. Stephan, Dalton Trans. 2016, 45, 5949-5957; d) M. H.
Holthausen, R. R. Hiranandani, D. W. Stephan, Chem. Sci. 2015, 6,
2016-2021; e) J. M. Bayne, D. W. Stephan, Chem. Soc. Rev. 2016, 45,
765-774.
3C-H
R
3Si-H
Scheme 3. Proposed mechanisms for HDF catalyzed by 22+ with
R = Me. Numbers indicate calculated (PBE1-D3/cc-pVTZ) values
of ΔGrxn for each step (kcal/mol).
The use of 2[B(C6F5)4]2 in HDF catalysis offers practical
advantages over known electron-deficient (e.g. borane, silylium
and alumenium cations) or electron-precise species (e.g. silane,
stibonium or phosphonium cations).[3-4] In contrast to such
previous systems, this salt is air-stable and easily synthesized
from commercially-available, bench-stable reagents within
minutes with no need for purification. Indeed, catalytic HDF was
also achieved by the generation of 10 mol% 2[B(C6F5)4]2 in-situ
from terpy, PhPCl2, and K[B(C6F5)4] and subsequent addition to a
mixture of 1-fluoropentane and Et3SiH in dry DCM. In addition, 22+
is also unique in featuring an electron-rich (hypervalent)
environment and a lone pair at the reactive electrophilic site.
In summary, we have exploited C-F bond activation by a
readily accessible and air-stable salt 2[B(C6F5)4]2 to achieve the
first example of catalytic HDF by P(III) Lewis acids. The use of
terpy as a stabilizing, yet potentially hemilabile ligand (Figure S20),
suggests new strategies for designing more robust versions of
other p-block Lewis acid catalysts. These findings bode well for
wider adoption of main-group catalyzed C-F bond reduction
methodologies by eliminating the challenging synthetic protocols
and requirements for strictly anhydrous conditions and highly
reactive intermediates that currently characterize this field.
[5]
[6]
Y. C. Fan, O. Kwon, Chem. Commun. 2013, 49, 11588-11619.
a) N. Burford, P. Ragogna, J. Chem. Soc., Dalton Trans. 2002, 4307-
4315; b) D. Gudat, Dalton Trans. 2016, 45, 5896-5907; c) J. M. Slattery,
S. Hussein, Dalton Trans. 2012, 41, 1808-1815.
[7]
[8]
S. S. Chitnis, A. P. M. Robertson, N. Burford, B. O. Patrick, R. McDonald,
M. J. Ferguson, Chem. Sci. 2015, 6, 6545-6555.
a) S. Burck, D. Foerster, D. Gudat, Chem. Commun. 2006, 2810-2812;
b) S. Burck, K. Goetz, M. Kaupp, M. Nieger, J. Weber, J. S. auf der
Guenne, D. Gudat, J. Am. Chem. Soc. 2009, 131, 10763-10774; c) S.
Burck, D. Gudat, M. Nieger, Angew. Chem. Int. Ed. 2007, 46, 2919-2922.
N. Đorđević, M. Q. Y. Tay, S. Muthaiah, R. Ganguly, D. Dimić, D. Vidović,
Inorg. Chem. 2015, 54, 4180-4182.
[9]
[10] N. Đorđević, R. Ganguly, M. Petković, D. Vidović, Inorg. Chem. 2017, 56,
14671-14681.
[11] a) C. C. Chong, H. Hirao, R. Kinjo, Angew. Chem. Int. Ed. 2015, 54, 190-
194; b) M. R. Adams, C.-H. Tien, R. McDonald, A. W. H. Speed, Angew.
Chem., DOI: 10.1002/anie.201709926; c) N. L. Dunn, M. Ha, A. T.
Radosevich, J. Am. Chem. Soc. 2012, 134, 11330-11333; d) W. Zhao, S.
M. McCarthy, T. Y. Lai, H. P. Yennawar, A. T. Radosevich, J. Am. Chem.
Soc. 2014, 136, 17634-17644.
[12] I. B. Sivaev, V. I. Bregadze, Coord. Chem. Rev. 2014, 270, 75-88.
[13] P. Švec, P. Novák, M. Nádvorník, Z. Padělková, I. Císařová, L. Kolářová,
A. Růžička, J. Holeček, J. Fluorine Chem. 2007, 128, 1390-1395.
Acknowledgements
D.W.S. gratefully acknowledges the financial support from
NSERC Canada and the award of Canada Research Chair.
D.W.S. is also grateful for the award of an Einstein Visiting
Fellowship at TU Berlin.
Keywords: phosphorus, Lewis acids, catalysis, dications,
hydrodefluorination
[1]
a) T. Ahrens, J. Kohlmann, M. Ahrens, T. Braun, Chem. Rev. 2015, 115,
931-972; b) Q. Shen, Y.-G. Huang, C. Liu, J.-C. Xiao, Q.-Y. Chen, Y. Guo,
This article is protected by copyright. All rights reserved.