6292
J. Y. Kim et al. / Tetrahedron Letters 50 (2009) 6290–6292
Table 1
100
Hydrodehalogenation of aryl halides using Pd–CNT nanocomposites
90
80
70
60
50
40
30
20
10
0
cat. CNT-Pd
Ar
X
Ar H
Base, solvent
Temp, 10 h
Entry
1
Ar-X
Methoda
Product
Yieldb (%)
99(95)c
Pd-CNT nanocomposites
Pd2(dba)3
Pd2(dba)3/CNT mixture
Cl
H
A
Me
Me
Cl
H
2
3
A
A
98(94)c
96(92)c
Cl
H
MeO
Me
MeO
Me
0
2
4
6
8
10
12
Reaction time (h)
Br
H
4
5
B
B
94(92)c
95(89)c
Figure 3. Catalytic activities of Pd–CNT, Pd2(dba)3, and a Pd2(dba)3/CNT mixture in
the hydrodehalogenation of 4-bromotoluene.
Br
H
Acknowledgments
t-Bu
t-Bu
This work was supported by the Korea Research Foundation
Grant funded by the Korean Government (MOEHRD, Basic Research
Promotion Fund) (KRF-2008-331-C00192).
Me
Me
Br
Me
Br
H
6
B
98(95)c
Me
Me
Me
H
References and notes
1. (a) Zawisza, A. M.; Muzart, J. Tetrahedron Lett. 2007, 48, 6738–6742; (b) Arcadi,
A.; Cerichelli, G.; Chiarini, M.; Vico, R.; Zorzan, D. Eur. J. Org. Chem. 2004, 16,
3404–3407.
2. Navarro, O.; Marion, N.; Oonishi, Y.; Kelly, R. A., III; Nolan, S. P. J. Org. Chem.
2006, 71, 685–692.
3. Chen, J.; Zhang, Y.; Yang, L.; Zhang, X.; Liu, J.; Li, L.; Zhang, H. Tetrahedron 2007,
63, 4266–4270.
4. Moon, J.; Lee, S. J. Organomet. Chem. 2009, 694, 473–477.
7
8
B
B
88(83)c
85(82)c
NO2
NO2
Br
H
N
N
5. (a) Monguchi, Y.; Kume, A.; Hattori, K.; Maegawa, T.; Sajiki, H. Tetrahedron
2006, 62, 7926–7933; (b) Kume, A.; Monguchi, Y.; Hattori, K.; Nagase, H.; Sajiki,
H. Appl. Catal. B: Environ. 2008, 81, 274–282.
6. (a) Kim, Y.-T.; Mitani, T. J. Catal. 2006, 238, 394–401; (b) Itoh, T.; Danjo, H.;
Sasaki, W.; Urita, K.; Bekyarova, E.; Arai, M.; Imamoto, T.; Yudasaka, M.; Iijima,
S.; Kanoch, H.; Kaneko, K. Carbon 2008, 46, 172–175; (c) Chen, L.; Yang, L.; Liu,
H.; Wang, X. Carbon 2008, 46, 2137–2143; (d) Li, J.; Liang, Y.; Liao, Q.; Zhu, X.;
Tian, X. Electrochim. Acta 2009, 54, 1277–1285.
7. (a) Wang, Z.-C.; Ma, Z.-M.; Li, H.-L. Appl. Surf. Sci. 2008, 254, 6521–6526; (b)
Chetty, R.; Kundu, S.; Xia, W.; Bron, M.; Schuhmann, W.; Chirila, V.; Brandl, W.;
Reinecke, T.; Muhler, M. Electrochim. Acta 2009, 54, 4208–4215.
8. Corma, A.; Garcia, H.; Leyva, A. J. Mol. Catal. 2005, 230, 97–105.
9. (a) Kitamura, Y.; Sakurai, A.; Udzu, T.; Maegawa, T.; Monguchi, Y.; Sajiki, H.
Tetrahedron 2007, 63, 10596–10602; (b) Zhang, P.-P.; Zhang, X.-X.; Sun, H.-X.;
Liu, R.-H.; Wang, B.; Lin, Y.-H. Tetrahedron Lett. 2009, 50, 4455–4458.
10. Lu, C.-Y.; Wey, M.-Y. Fuel 2007, 86, 1153–1161.
11. Abbaslou, R. M. M.; Tavasoli, A.; Dalai, A. K. Appl. Catal. A 2009, 355, 33–41.
12. Castro, C. E. Rev. Environ. Contam. Toxicol. 1998, 155, 1–67.
13. (a) Planeix, J. M.; Coustel, N.; Coq, B.; Brotons, V.; Kumbhar, P. S.; Dutartre, P.;
Geneste, P.; Bernier, P.; Ajayan, P. M. J. Am. Chem. Soc. 1994, 116, 7935–7936;
(b) Choi, H. C.; Shim, M.; Bangsaruntip, S.; Dai, H. J. Am. Chem. Soc. 2002, 124,
9058–9059; (c) Tzitzios, V.; Georgakilas, V.; Oikonomou, E.; Karakassides, M.;
Petridis, D. Carbon 2006, 44, 848–853; (d) Vu, H.; Goncalves, F.; Philippe, R.;
Lamouroux, E.; Corrias, M.; Kihn, Y.; Plee, D.; Kalck, P.; Serp, P. J. Catal. 2006,
240, 18–22.
Reaction method A: 2.3 mol % of Pd, Aryl chloride 3.0 mmol, and NaOtBu
a
3.6 mmol were reacted in the isopropanol at 80 °C for 10 h. Reaction method B:
2.3 mol % of Pd, aryl bromide 3.0 mmol, and Cs2CO3 3.6 mmol were reacted in the
cyclohexanol at 100 °C for 10 h.
b
All compounds are characterized by comparison of gas chromatography (GC)
analysis, 1H and 13C NMR spectra with authentic samples or literature data.
c
Yields were obtained from the second use of Pd–CNT. In this study, the product
yield is determined by GC, 1H and 13C NMR spectra.
the catalytic activity. Adsorption of aryl halides is also favored by
van der Waals interactions between the CNTs and aromatic rings,
which could show favorable reactant–product mass trans-
portation.14
In summary, we examined the hydrodehalogenation of aryl ha-
lides with Pd–CNT nanocomposite under ligandless conditions. The
Pd–CNT nanocomposites were prepared by depositing Pd2(dba)3
on thiolated nanotube surfaces. They effectively promoted the
hydrodehalogenation of aryl halides at low Pd content (ꢀ2.3%) in
the absence of any ligand, and exhibited higher activity than that
of the reference systems. The results suggest that the CNTs could
significantly influence the catalytic activities of the CNT-supported
metal catalysts for hydrodehalogenation.
14. (a) Vermisoglou, E. C.; Georgakilas, V.; Kouvelos, E.; Pilatos, G.; Viras, K.;
Romanos, G.; Kanellopoulos, N. K. Micropor. Mesopor. Mater. 2007, 99, 98–105;
(b) Vermisoglou, E. C.; Romanos, G. E.; Tzitzios, V.; Karanikolos, G. N.; Akylas,
V.; Delimitis, A.; Pilatos, G.; Kanellopoulos, N. K. Micropor. Mesopor. Mater.
2009, 120, 122–131.