Reduction of Sulfoxides to Sulfides in the Presence of Cu Catalysts
837
9. Nicolau KC, Kuombis AE, Synder SA, Simonsen KB (2000)
Angew Chem Int Ed 39:2529–2533
10. Fernandes AC, Fernandes JA, Roma˜o CC, Veiros LF, Calhorda
11. Reis PM, Costa PJ, Roma˜o CC, Fernandes JA, Calhorda MJ,
Royo B (2008) Dalton Trans 1727–1733
d = 138.3, 128.7, 126.5, 124.9, 15.7 ppm; MS (ESI) m/
z = 124 (100, M?), 109 (51), 91 (49), 78 (51), 85 (21).
p-Cyanophenyl methylsulfide (14a): Rf = 0.90 (ace-
tone:CH2Cl2 1:9); 1H NMR (CDCl3, 200 MHz): d =
7.48–7.53 (m, 2H), 7.21–7.27 (m, 2H), 2.49 ppm (s, 3H);
13C NMR (CDCl3, 50 MHz): d = 146.0, 132.0, 125.3,
118.8, 107.4, 14.5 ppm; MS (ESI) m/z = 149 (100, M?),
134 (32), 116 (60), 104 (23).
12. Bahrami K, Khodaei MM, Karimi A (2008) Synthesis 2543–2546
13. Khurana JM, Sharma VS, Chacko
63:966–969
14. Yoo BW, Park MC, Song MS (2007) Synth Commun
A (2007) Tetrahedron
37:4079–4083
15. Yoo BW, Song MS, Park MC (2007) Bull Korean Chem Soc
28:171–172
16. Yoo BW, Song MS, Park MC (2007) Synth Commun
37:3089–3093
17. Pandey LK, Pathak U, Rao AN (2007) Synth Commun
37:4105–4109
p-Nitrophenyl methylsulfide (15a): Rf = 0.90 (ace-
tone:CH2Cl2 1:9); 1H NMR (CDCl3, 200 MHz): d =
8.07–8.12 (m, 2H), 7.24–7.29 (m, 2H), 2.53 ppm (s, 3H);
13C NMR (CDCl3, 50 MHz): d = 148.8, 144.5, 124.8,
123.7, 14.8 ppm; MS (ESI) m/z = 169 (100, M?), 139
(50), 123 (13), 111 (16), 108 (33), 82 (14), 77 (38).
Dibenzylsulfide (16a): Rf = 0.74 (n-hexane:ethyl ace-
tate 1:5); 1H NMR (CDCl3, 200 MHz): d = 7.31–7.37 (m,
10H), 3.65 ppm (s, 4H); 13C NMR (CDCl3, 50 MHz):
d = 138.0, 128.9, 128.4, 126.9, 35.5 ppm; MS (ESI)
m/z = 214 (59, M?), 123 (31), 91 (100), 65 (17).
tert-Butyl methylsulfide (17a): MS (ESI) m/z = 104
(36, M?), 57 (82), 41 (100).
Dibutylsulfide (18a): 1H NMR (CDCl3, 100 MHz)
d = 2.28 (t, 4H, J = 7.20 Hz, S(CH2CH2CH2CH3)2),
1.14–1,49 (m, 8H, S(CH2CH2CH2CH3)2), 0.75 ppm (t, 6H,
J = 7.20 Hz, CH3); 13C NMR (CDCl3, 50 MHz) d = 32.1,
32.0, 22.3, 13.8 ppm; MS (ESI) m/z = 146 (M?, 40), 103
(15), 90 (31), 61 (97), 56 (100).
18. Bahrami K, Khodaei MM, Khedri
36:1324–1325
M (2007) Chem Lett
19. Fernandes AC, Roma˜o CC (2007) Tetrahedron Lett
48:9176–9179
20. Fernandes AC, Roma˜o CC (2006) Tetrahedron 62:9650–9654
21. Roy CD, Brown HC (2006) J Chem Res 10:642–644
22. Raju BR, Devi G, Nongpluh YS, Saikia AK (2005) Synlett
358–360
23. Espenson JH (2005) Coord Chem Rev 249:329–341
´
Arnaiz FJ (2004) Synthesis 1629–1632
24. Sanz R, Escribano J, Fernandez Y, Aguado R, Pedrosa MR,
´
25. Harrison DJ, Tam NC, Vogels CM, Langler RF, Baker RT,
Decken A, Westcott SA (2004) Tetrahedron Lett 45:8493–8496
26. Koshino N, Espenson JH (2003) Inorg Chem 42:5735–5742
27. Yoo BW, Choi KH, Kim DY, Choi KI, Kim JH (2003) Synth
Commun 33:53–57
28. Arias J, Newlands CR, Abu-Omar MM (2001) Inorg Chem
40:2185–2192
29. Abu-Omar MM, Khan SI (1998) Inorg Chem 37:4979–4985
30. Arterburn JB, Perry MC (1996) Tetrahedron Lett 37:7941–7944
31. Abu-Omar MM, Appelman EH, Espenson JH (1996) Inorg Chem
35:7751–7757
32. Kukuskin VY (1995) Coord Chem Rev 139:375–407
33. Zhu Z, Espenson JH (1995) J Mol Catal A 103:87–94
34. Kukuskin VY (1990) Russ Chem Rev 59:844–852
35. Madesclaire M (1988) Tetrahedron 44:6537–6551
36. Bryan JC, Stenkamp RE, Tulip TH, Mayer JM (1987) Inorg
Chem 26:2283–2288
Tetrahydrothiophene (19a): 1H NMR (CDCl3,
200 MHz): d = 2.42–2.55 (m, 4H), 1.36–1.48 ppm (m,
4H); 13C NMR (CDCl3, 50 MHz): d = 32.1, 32.0 ppm;
MS (ESI) m/z = 87 (13, M?), 59(49), 43 (100).
2,4-Dithiapentane (20a): MS (ESI) m/z = 110 (14, M?),
108 (99), 61 (100).
Acknowledgments Financial support from the Cluster of Excel-
lence ‘‘Unifying Concepts in Catalysis’’ (funded by the Deutsche
Forschungsgemeinschaft and administered by the Technische
37. Cha JS, Kim JE, Kim JD (1985) Tetrahedron Lett 26:6453–6456
38. Brown HC, Ravindran N (1973) Synthesis 42–43
39. Guidon Y, Atkinson JG, Morton HE (1984) J Org Chem
49:4538–4540
40. Sousa SCA, Fernandes AC (2009) Tetrahedron Lett
50:6872–6876
¨
Universitat Berlin) is gratefully acknowledged.
References
`
41. Anastas PT, Kirchhoff MM (2002) Acc Chem Res 35:686–694
42. Anastas PT, Kirchhoff MM, Williamson TC (2001) Appl Catal A
221:3–13
1. Hille R, Reetey J, Bartlewski-Hof U, Reichenbecher W, Schink B
(1999) FEMS Microbiol Rev 22:489–501
2. Hille R (1996) Chem Rev 96:2757–2816
3. Kisker C, Schindelin H, Rees DC (1997) Annu Rev Biochem
66:233–267
4. Enemark JH, Cooney JJA, Wang J-J, Holm RH (2004) Chem Rev
104:1175–1200
5. McGarrigle EM, Myers EL, Illa O, Shaw MA, Riches SL,
Aggarwal VK (2007) Chem Rev 107:5841–5883
6. Rickard D, Luther GW III (2007) Chem Rev 107:514–562
7. Nicolas E, Vilaseca M, Giralt
5701–5710
43. Anastas PT (2009) ChemSusChem 2:391–392
44. Enthaler S, Junge K, Beller
120:2531–2535
M (2008) Angew Chem
45. Enthaler S, Junge K, Beller M (2008) Angew Chem Int Ed
47:3317–3321
46. Brunner H, Mehling W (1984) J Organomet Chem 275:c17–c21
47. Rendler S, Oestreich M (2007) Angew Chem Int Ed 46:498–504
48. Deutsch C, Krause N, Lipshutz BH (2008) Chem Rev
108:2916–2927
E (1995) Tetrahedron 51:
49. Diez-Gonzalez S, Nolan SP (2008) Acc Chem Res 41:349–358
50. Lee C-T, Lipshutz BH (2008) Org Lett 10:4187–4190
8. Nicolau KC, Kuombis AE, Synder SA, Simonsen KB (2000)
Angew Chem 112:2629–2633
123