5062
V. Go´mez-Ben´ıtez et al. / Tetrahedron Letters 47 (2006) 5059–5062
H, 4.06. Found: C, 63.49; H, 4.15. MS-FAB+ [M+] = 571
6. (a) Hegedus, L. L.; McCabe, R. W. In Catalyst Poisoning;
Marcel Dekker: New York, 1984; (b) Hutton, A. T. In
Comprehensive Coordination Chemistry; Wilkinson, G.,
Guillard, R. D., McCleverty, J. A., Eds.; Pergamon:
Oxford, UK, 1984; Vol. 5.
m/z.
15. Data Collection and refinement for [NiCl{C6H3-2,6-
(OPPh2)2}] (3). A crystalline green prism of [NiCl{C6H3-
2,6-(OPPh2)2}] (3). The X-ray intensity data were mea-
sured at 291 K on a Bruker SMART APEX CCD-based
X-ray diffractometer system equipped with a Mo-target X-
7. (a) Transition Metal Sulphides; Weber, T., Prins, R., van
Santen, R. A., Eds.; Kluwer Academic: Dordrecht, 1998;
(b) Transition Metal Sulfur Chemistry. Biological and
Industrial Significance; Stiefel, E. I., Matsumoto, K., Eds.;
ACS Symposium Series 653; American Chemical Society:
Washington, DC, 1996; (c) Linford, L.; Raubenheimer, H.
G. In Advances in Organometallic Chemistry; Academic
Press: San Diego, 1991; Vol. 32, (d) Murray, S. G.;
Hartley, F. R. Chem. Rev. 1981, 81, 365–414.
8. (a) Kosugi, M.; Shimizu, T.; Migita, T. Chem. Lett. 1978,
13–14; (b) Suzuki, H.; Abe, H.; Osuka, A. Chem. Lett.
1980, 1363–1364; (c) Bowman, W. R.; Heaney, H.; Smith,
P. H. G. Tetrahedron Lett. 1984, 25, 5821–5824; (d)
Yamamoto, T.; Sekine, Y. Can. J. Chem. 1984, 62, 1544–
1547; (e) Ciattini, P. G.; Morera, E.; Ortar, G. Tetra-
hedron Lett. 1995, 36, 4133–4136; (f) Hartwig, J. F.;
˚
ray tube (k = 0.71073 A). The detector was placed at a
distance of 4.837 cm from the crystal. A total of 1800
frames were collected with a scan width of 0.3° in x and an
exposure time of 10 s/frame. The frames were integrated
with the Bruker SAINT software package using a narrow-
frame integration algorithm. The integration of the data
using a monoclinic unit cell yielded a total of 26,476
˚
reflections to a maximum 2h angle of 56.00° (0.93 A
resolution), of which 6284 were independent (Rint
=
5.05%, Rsig = 5.47%) and 4566 were greater than
2r(F2). Analysis of the data showed negligible decay
during data collection. The structure was solved by
Patterson method using SHELXS-97 program.16 The
remaining atoms were located via a few cycles of least
squares refinements and difference Fourier maps, using the
space group P21/c, with Z = 4. The final cycle of refine-
ment was carried out on all nonzero data using SHELXL-
9717 and anisotropic thermal parameters for all non-
hydrogen atoms. The numbering of the atoms is shown in
Figure 1 (ORTEP).18 Supplementary data for complex 3
has been deposited at the Cambridge Crystallographic
Data Centre. Copies of this information are available free
of charge on request from The Director, CCDC, 12
Union Road, Cambridge, CB2 1EZ, UK (Fax: +44 1223
336033; e-mail: deposit@ccdc.cam.ac.uk or www: http://
CCDC 298238.
Barranano, D. J. Am. Chem. Soc. 1995, 117, 2937–
˜
2938; (g) Zheng, N.; McWilliams, J. C.; Fleitz, F. J.;
Armstrong, J. D., III; Volante, R. P. J. Org. Chem. 1998,
63, 9606–9607; (h) Bates, C. G.; Gujadhur, R. K.;
Venkataraman, D. Org. Lett. 2002, 4, 2803–2806; (i)
Kwong, F. Y.; Buchwald, S. L. Org. Lett. 2002, 4, 3517–
3520.
9. (a) Chowdhury, S.; Roy, S. Tetrahedron Lett. 1997, 38,
2149–2152; (b) Itoh, T.; Mase, T. Org. Lett. 2004, 6,
4587–4590; Using (SeR)2 (c) Millois, C.; Diaz, P. Org.
Lett. 2000, 2, 1705–1708; (d) Nishino, T.; Nishiyama, Y.;
Sonoda, N. Chem. Lett. 2003, 32, 918–919; (e) Nishino,
T.; Okada, M.; Kuroki, T.; Watanabe, T.; Nishiyama, Y.;
Sonoda, N. J. Org. Chem. 2002, 67, 8696–8698.
16. Bruker AXS, SAINT Software Reference Manual, Mad-
ison, WI, 1998.
´
´
10. (a) Baldovino-Pantaleon, O.; Hernandez-Ortega, S.; Mor-
ales-Morales, D. Inorg. Chem. Commun. 2005, 8, 955–959;
17. Sheldrick, G. M. SHELXTL NT Version 6.10, Program
for Solution and Refinement of Crystal Structures; Univer-
sity of Go¨ttingen: Germany, 2000.
18. Farrugia, L. J. J. Appl. Crystallogr. 1997, 30, 565.
19. Thiolation of iodobenzene. Under an atmosphere of
´
´
(b) Baldovino-Pantaleon, O.; Hernandez-Ortega, S.; Mor-
ales-Morales, D. Adv. Synth. Catal. 2006, 348, 236–
242.
´
11. Morales-Morales, D.; Grause, C.; Kasaoka, K.; Redon,
R.; Cramer, R. E.; Jensen, C. M. Inorg. Chim. Acta 2000,
300–302, 958–963.
nitrogen, a solution of 4.9 mmol of iodobenzene,
2.45 mmol of methyl disulfide, 3.0 mg of catalyst 3
(0.0057 mmol) and 202 mg (0.924 mmol) of diethylene
glycol di-n-butylether (internal standard) in 3.0 mL of
DMF, was introduced into a Schlenk tube containing a
magnetic stir bar and charged with 4.9 mmol of zinc dust.
The tube was sealed and fully immersed in a 110 °C silicon
oil bath. After 4 h, the reaction mixture was cooled to
room temperature and, the organic phase analyzed by gas
chromatography (Quantitative analyses were performed
on a Agilent 6890N GC with a 30.0 m DB-1MS capillary
column coupled to an Agilent 5973 inert mass selective
detector).
´
12. Morales-Morales, D.; Redon, R.; Yung, C.; Jensen, C. M.
Chem. Commun. 2000, 1619–1620.
13. Bedford, R. B.; Draper, S. M.; Scully, P. N.; Welch, S. L.
New J. Chem. 2000, 24, 745–747.
14. Synthesis of [NiCl{C6H3-2,6-(OPPh2)2}] (3). A solution of
toluene
(50 mL),
[C6H4-2,6-(OPPh2)2]
(907 mg,
1.89 mmol), and NiCl2 (450 mg, 1.89 mmol) were refluxed
for 24 h. The solvent was evaporated under vacuum and
the crude product isolated. Following recrystalization
from diethyl ether, the purified product was obtained
(yield 880 mg, 82%). 1H NMR (300 MHz, CDCl3):
3
3
d = 6.61 (d, JHH = 8.0 Hz, 2H, arom), 7.06 (t, JHH
=
20. Taniguchi, N. J. Org. Chem. 2004, 69, 6904–6906.
21. Marganian, Ch. A.; Vazir, H.; Baidya, N.; Olmstead, M.
M.; Mascharak, P. K. J. Am. Chem. Soc. 1995, 117, 1584–
1594.
7.7 Hz, 1H, arom), 7.45 (br m, 12H, arom), 7.99 (br m,
8H, arom); 31P{1H} NMR (121 MHz, CDCl3): d = 141.52
(s, 1P). Anal. calcd for C30H23ClO2P2Ni (571.60) C, 63.04;