362 B.W. Yoo et al.
Methyl 4-tolyl sulfide (Table 2, Entry 9) : 1H NMR (300 MHz, CDCl3): δ 7.54 (d, 2H, J = 11.1
Hz), 7.33 (d, 2H, J = 8.1 Hz), 2.70 (s, 3H), 2.41 (s, 3H). 13C NMR (75 MHz, CDCl3): δ 134.9,
134.6, 129.6, 127.4, 20.9,16.6. GC/MS (m/z): 138 (M+).
1
Dibenzyl sulfide (Table 2, Entry 10): H NMR (300 MHz, CDCl3): δ 7.35–7.25 (m, 10H),
3.61(s, 4H). 13C NMR (75 MHz, CDCl3): δ 138.2, 129.2, 128.6, 127.2, 35.7. GC/MS (m/z): 214
(M+).
Benzyl phenyl sulfide (Table 2, Entry 11): 1H NMR (300 MHz, CDCl3): δ 7.33–7.19 (m, 10H),
4.13 (s, 2H). 13C NMR (75 MHz, CDCl3): δ 137.4, 136.3, 129.9, 128.8, 128.4, 127.8, 127.1,
125.4, 39.1. GC/MS (m/z): 200 (M+).
Dibutyl sulfide (Table 2, Entry 12) : 1H NMR (300 MHz, CDCl3): δ 2.61–2.68 (m, 4H), 1.68–
1.73 (m, 4H), 1.42–1.52 (m, 4H), 0.95 (t, 6H, J = 7.2 Hz). 13C NMR (75 MHz, CDCl3): δ 32.0,
30.4, 22.2, 13.8. GC/MS (m/z): 146 (M+).
1
4-Nitrophenyl-p-tolyl sulfide (Table 2, Entry 13): H NMR (300 MHz, CDCl3): δ 8.41–7.25
(m, 8H), 2.37 (s, 3H). 13C NMR (75 MHz, CDCl3): δ 147.2, 138.1, 136.9, 132.0, 130.9, 130.0,
128.9, 124.2, 20.4. GC/MS (m/z): 245 (M+).
3-Cyanophenyl-p-tolyl sulfide (Table 2, Entry 14): 1H NMR (300 MHz, CDCl3): δ 7.52–6.86
(m, 8H), 2.34 (s, 3H). 13C NMR (75 MHz, CDCl3): δ 137.0, 135.5, 134.7, 132.7, 131.0,130.7,
129.8, 129.1, 117.5, 114.2, 20.3. GC/MS (m/z): 225 (M+).
Disclosure statement
No potential conflict of interest was reported by the authors.
Funding
This work was financially supported by Korea University.
References
[1] Firouzabadi H, Jamalian A. Reduction of oxygenated organosulfur compounds. J Sulfur Chem. 2008;29:53–97.
[2] Carreno MC. Applications of sulfoxides to asymmetric synthesis of biologically active compounds. Chem Rev.
1995;95:1717–1760.
[3] Volonterio A, Bravo O, Pesenti C, Zanda M. The ‘non-oxidative’ chloro-Pummerer reaction: a highly stereoselec-
tive entry to β-chloro amines and aziridines. Tetrahedron Lett. 2001;42:3985–3988.
[4] Solladie G. In: Morrison JD, editor. Asymmetric synthesis. New York: Academic; 1983; Vol. 2, p. 157–199.
[5] Walker AJ. Asymmetric carbon–carbon bond formation using sulfoxide-stabilised carbanions. Tetrahedron Asym-
metry. 1992;3:961–998.
[6] Schmizu M, Shibuya K, Hayakawa R. Chemoselective deoxygenation of sulfoxides with titanium tetraiodide.
Synlett. 2000;11:1437–1438.
[7] Khurana JM. Deoxygenation of sulfoxides and selenoxides with nickel boride. Tetrahedron Lett. 1998;39:3829–
3832.
[8] Yadav JS, Reddy BVS, Srinivas C, Srihari P. Ultrasound-promoted deoxygenation of sulfoxides by samarium-
NH4Cl. Synlett. 2001;12:854–856.
[9] Balicki R. Mild and efficient deoxygenation of sulfoxides with titanium(IV) chloride/sodium iodide reagent system.
Synthesis. 1991;2:155–156.
[10] Miller SJ, Collier TR, Wu W. Efficient reduction of sulfoxides with 2,6-dihydroxypyridine. Tetrahedron Lett.
2000;41:3781–3783.
[11] Khurana JM, Sharma V, Chacko SA. Deoxygenation of sulfoxides, selenoxides, telluroxides, sulfones, selenones
and tellurones with Mg-MeOH. Tetrahedron. 2007;63:966–969.
[12] Bhatia GS, Graczyk PP. A mild protocol for the deoxygenation of α-hydrogen-containing sulfoxides to the
corresponding sulfoxides to the corresponding sulfides. Tetrahedron Lett. 2004;45:5193–5195.
[13] Hua G, Woolin JD. The synthesis of sulfides by deoxygenation of sulfoxides using Woollins’ reagent. Tetrahedron
Lett. 2007;48:3677–3679.
[14] Cabrita I, Sousa SCA, Fernandes AC. Reduction of sulfoxides catalyzed by oxo-complexes. Tetrahedron Lett.
2010;51:6132–6135.