Please do not adjust margins
Chemical Science
Page 6 of 7
ARTICLE
Journal Name
S. Liu, and L. Lin, Green Chem., 2016, 1D8O, 1I:0108.010–3190/8C86.SC05642C
There are only two examples of beta zeolite‐based catalysts
for chemoselective acetalization of HMF with alcohols: (a) K.
S. Arias, S. I. Al‐Resayes, M. J. Climent, A. Corma, and S. Iborra,
hydroxyl groups, C=C bonds, and heteroatoms with alcohols.
This study suggests the development of bifunctional solid
catalysts with uniform active sites is of particular importance.
This approach is a promising strategy for the development of
highly efficient heterogeneously‐catalyzed reactions through
the non‐dissociative activation of both electrophiles and
nucleophiles under very mild conditions.
9
ChemSusChem, 2013,
6, 123–131; (b) O. Casanova, S. Iborra,
and A. Corma, J. Catal., 2009, 265, 109–116.
10 (a) K. Nakajima, Y. Baba, R. Noma, M. Kitano, J. N. Kondo, S.
Hayashi, and M. Hara, J. Am. Chem. Soc., 2011, 133, 4224–
4227; (b) A. Dutta, A. K. Patra, S. Dutta, B. Saha, and A.
Bhaumik, J. Mater. Chem., 2012, 22, 14094–14100; (b) A.
Dutta, D. Gupta, A. K. Patra, B. Saha, and A. Bhaumik,
Acknowledgements
ChemSusChem, 2014,
7, 925–933; (c) A. Dibenedetto, M.
This work was supported in part by a Kakenhi Grant‐in‐Aid (No.
15K13802) from the Japan Society for the Promotion of Science
(JSPS), the ALCA and CREST programs of the Japan Science and
Technology Agency (JST), the Novel Cheap and Abundant
Materials for Catalytic Biomass Conversion (NOVACAM)
program of JST, and the European Commission Directorate‐
General for Research and Innovation.
Aresta, L. di Bitonto, and C. Pastore, ChemSusChem, 2016, 9,
118–125.
11 CePO4 catalysts have been extensively investigated for gas‐
phase reactions such as the selective catalytic reduction of
NOx with NH3, CO oxidation, and oxidative dehydrogenation
of isobutene, and the use as acid‐base catalysts for liquid‐
phase reactions has not been reported: (a) W. Yao, Y. Liu, X.
Wang, X. Weng, H. Wang, and Z. Wu, J. Phys. Chem. C, 2016,
120, 221–229; (d) C. Tian, S.‐H. Chai, X. Zhu, Z. Wu, A. Binder,
J. C. Bauer, S. Brown, M. Chi, G. M. Veith, Y. Guo, and S. Dai, J.
Mater. Chem. A, 2012, 22, 25227–25235; (f) F. Romero‐Sarria,
M. I. Domínguez, M. A. Centeno, and J. A. Odriozola, Appl.
Catal., B, 2011, 107, 268–273; (g) K. Ikeue, K. Murakami, S.
Hinokuma, K. Uemura, D. Zhang, and M. Machida, Bull. Chem.
Soc. Jpn., 2010, 83, 291–297; (k) Y. Takita, X. Qing, A. Takami,
H. Nishiguchi, and K. Nagaoka, Appl. Catal., A, 2005, 296, 63–
69; (l) Y. Takita, K.‐I. Sano, T. Muraya, H. Nishiguchi, N. Kawata,
M. Ito, T. Akbay, and T. Ishihara, Appl. Catal., A, 1998, 170, 23–
31.
12 J. Bao, R. Yu, J. Zhang, X. Yang, D. Wang, J. Deng, J. Chen, and
X. Xing, CrystEngComm, 2009, 11, 1630–1634.
13 (a) K. Wang, J. Zhang, J. Wang, C. Fang, W. Yu, X. Zhao, and H.
Xu, J. Appl. Crystallogr., 2005, 38, 675–677; (b) W. Jastrzebski,
M. Sitarz, M. Rokita, and K. Bulat, Spectrochim. Acta, Part A,
2011, 79, 722–727.
14 E. Beche, P. Charvin, D. Perarnau, S. Abanades, and G. Flamant,
Surf. Interface Anal., 2008, 40, 264–267.
15 (a) D. R. Mullins, S. H. Overbury, and D. R. Huntley, Surf. Sci.,
1998, 409, 307–319; (b) L. Qiu, F. Liu, L. Zhao, Y. Ma, and J.
Yao, Appl. Surf. Sci., 2006, 252, 4931–4935; (c) F. Larachi, J.
Pierre, A. Adnot, and A. Bernis, Appl. Surf. Sci., 2002, 195, 236–
250.
Notes and references
1
Topics in Organometallics Chemistry— Bifunctional Molecular
Catalysis, eds. T. Ikariya, and M. Shibasaki, Springer, Berlin,
2011.
2
(a) E. Iglesia, D. G. Barton, J. A. Biscardi, M. J. L. Gines, and S.
L. Soled, Catal. Today, 1997, 38, 339–360; (b) N. Mizuno, and
K. Yamaguchi, Synlett, 2010, 2365–2382; (c) M. J. Climent, A.
Corma, S. Iborra, and M. J. Sabater, ACS Catal., 2014, 4, 870–
891; (d) D. H. Paull, C. J. Abraham, M. T. Scerba, E. Alden‐
Danforth, and T. Lectka, Acc. Chem. Res., 2008, 41, 655–663;
(b) J. A. Ma, and D. Cahard, Angew. Chem., Int. Ed., 2004, 43
4566–4583.
,
3
(a) R. A. Sheldon, I. W. C. E. Arends, and U. Hanefeld, in Green
Chemistry and Catalysis, eds. R. A. Sheldon, I. W. C. E. Arends,
and U. Hanefeld, Wiley‐VCH, Weinheim, 2007, pp. 133–221;
(b) Y. Ono, and H. Hattori, Solid Base Catalysis, Springer‐Verlag,
Heidelberg, 2011; (c) H. Hattori, and Y. Ono, Solid Acid
Catalysis: From Fundamentals to Applications, CRC Press,
Stanford, 2015.
4
5
(a) K. Motokura, M. Tada, and Y. Iwasawa, Chem. Asian J.,
2008,
3, 1230–1236; (b) S. Shylesh, and W. R. Thiel,
ChemCatChem, 2011,
3, 278–287.
16 T. Komanoya, K. Nakajima, M. Kitano, and M. Hara, J. Phys.
Chem. C, 2015, 119, 26540–26546.
17 (a) Y. Izumi, K. Urabe, and M. Onaka, Micropor. Mesopor.
Mater., 1998, 21, 227–233; (b) I. Ledneczki, and Á. Molnár,
Synth. Commun., 2004, 34, 3683–3690; (c) M. Iwamoto, Y.
Tanaka, N. Sawamura, and S. Namba, J. Am. Chem. Soc., 2003,
125, 13032–13033; (d) L. Vivier, and D. Duprez, ChemSusChem,
(a) T. Kimura, K. Kamata, and N. Mizuno, Angew. Chem., Int.
Ed., 2012, 51, 6700–6703; (b) T. Kimura, H. Sunaba, K. Kamata,
and N. Mizuno, Inorg. Chem., 2012, 51, 13001–13008; (c) H.
Sunaba, K. Kamata, and N. Mizuno, ChemCatChem, 2014, 6,
2333–2338; (d) K. Sugahara, N. Satake, K. Kamata, T. Nakajima,
and N. Mizuno, Angew. Chem., Int. Ed., 2014, 53, 13248–
13252.
S. Kobayashi, and K, Manabe, Acc. Chem. Res., 2002, 35, 209–
217.
2010, 3, 654–678; (e) T. Sato, F. Ono, H. Takenaka, T. Fujikawa,
and M. Mori, Synthesis, 2009, 1318–1322.
6
7
18 The acetalization of 1a with methanol in the presence of
CePO4 was carried out under the same reaction conditions of
beta‐zeolite reported in ref 9. The 2a yield was 6% and
comparable to (or lower than) that of calcined and
(a) A. A. Rosatella, S. P. Simeonov, R. F. M. Frade, and C. A. M.
Afonso, Green Chem., 2011, 13, 754–793; (b) R. J. van Putten,
J. C. van der Waal, E. de Jong, C. B. Rasrendra, H. J. Heeres,
and J. G. de Vries, Chem. Rev., 2013, 113, 1499–1597.
The 1a‐based ethers and acetals are important chemicals as
biodiesel, surfactants, scents, and flavors: (a) O. Casanova, S.
Iborra, and A. Corma, J. Catal., 2010, 275, 236–242; (b) P.
Neves, M. M. Antunes, P. A. Russo, J. P. Abrantes, S. Lima, A.
Fernandes, M. Pillinger, S. M. Rocha, M. F. Ribeiro, and A. A.
Valente, Green Chem., 2013, 15, 3367–3376; (c) E. R. Sacia, M.
Balakrishnan, and A. T. Bell, J. Catal., 2014, 313, 70–79; (d) P.
Lanzafame, K. Barbera, S. Perathoner, G. Centi, A. Aloise, M.
Migliori, A. Macario, J. B. Nagy, and G. Giordano, J. Catal.,
1
dehydrated Al‐beta zeolite (ca. 600 m2 g– , Si/Al = 12.5),
8
whereas the reactivity per unit surface area was comparable
to that of zeolite.
19 R. A. Sheldon, M. Wallau, I. W. C. E. Arends, and U. Schuchardt,
Acc. Chem. Res., 1998, 31, 485–493.
20 (a) M. I. Zaki, M. A. Hasan, F. A. Al‐Sagheer, and L. Pasupulety,
Langmuir, 2000, 16, 430–436; (b) M. I. Zaki, M. A. Hasan, and
L. Pasupulety, Langmuir, 2001, 17, 768–774.
21 The amounts of Ce cations exposed on the surface were
estimated assuming that the (011) plane is a possible surface
6 | J. Name., 2012, 00, 1‐3
This journal is © The Royal Society of Chemistry 20xx
Please do not adjust margins