Chemistry - A European Journal
10.1002/chem.201802185
FULL PAPER
Woolfson, D. N.; Ward, T. R., Chimeric Streptavidins as Host
Proteins for Artificial Metalloenzymes. ACS Catalysis 2018, 8 (2),
476-1484; (g) Hestericová, M.; Heinisch, T.; Alonso-Cotchico, L.;
Keywords: artificial metalloenzymes • asymmetric
dihydroxylation • asymmetric epoxidation • organic solvents •
asymmetric catalysis
1
Maréchal, J.-D.; Vidossich, P.; Ward, T. R., Directed Evolution of an
Artificial Imine Reductase. Angewandte Chemie International Edition
2
018, 57 (7), 1863-1868; (h) Rebelein, J. G.; Ward, T. R., In vivo
catalyzed new-to-nature reactions. Current Opinion in Biotechnology
018, 53, 106-114; (i) Wieszczycka, K.; Staszak, K., Artificial
1
2
2
.
Illanes, A., Enzyme Biocatalysis: principles and Applications.
008; p 392.
Bornscheuer, U. T.; Huisman, G. W.; Kazlauskas, R. J.; Lutz,
2
metalloenzymes as catalysts in non-natural compounds synthesis.
Coordination Chemistry Reviews 2017; (j) Pàmies, O.; Diéguez, M.;
Bäckvall, J.-E., Artificial Metalloenzymes in Asymmetric Catalysis:
Key Developments and Future Directions. Advanced Synthesis &
Catalysis 2015, n/a-n/a; (k) Diéguez, M., Bäckvall, J.-E., Pàmies,
O.(eds), Artificial Metalloenzymes and MetalloDNAzymes in
Catalysis: From Design to Applications. Wiley-VCH: Weinheim, 2018.
.
S.; Moore, J. C.; Robins, K., Engineering the Third Wave of
Biocatalysis. Nature 2012, 485, 185.
3.
(a) Volkin, D. B.; Staubli, A.; Langer, R.; Klibanov, A. M.,
Enzyme thermoinactivation in anhydrous organic solvents.
Biotechnology and bioengineering 1991, 37 (9), 843-853; (b)
Klibanov, A. M., Improving enzymes by using them in organic
solvents. Nature 2001, 409 (6817), 241-246.
8.
Yamamura, K.; Kaiser, E. T., Studies on the Oxidase Activity
of Copper(Ii) Carboxypeptidase A. J. Chem. Soc., Chem. Commun.
4.
(a) Luckarift, H. R.; Ku, B. S.; Dordick, J. S.; Spain, J. C.,
1976, 830.
Silica-immobilized enzymes for multi-step synthesis in microfluidic
devices. Biotechnology and Bioengineering 2007, 98 (3), 701-705;
9. (a) Das, P. K.; Caaveiro, J. M. M.; Luque, S.; Klibanov, A. M.,
Asymmetric Sulfoxidations Mediated by Chymotrypsin.
Biotechnologie and bioengineering 2002, 78 (1), 104-109; (b)
Esmieu, C.; Cherrier, M. V.; Amara, P.; Girgenti, E.; Marchi-
Delapierre, C.; Oddon, F.; Iannello, M.; Jorge-Robin, A.; Cavazza,
C.; Ménage, S., An Artificial Oxygenase Built from Scratch:
Substrate Binding Site Identified Using a Docking Approach. Angew.
Chem., Int. Ed. 2013, 52, 3922.
(b) Tielmann, P.; Kierkels, H.; Zonta, A.; Ilie, A.; Reetz, M. T.,
Increasing the activity and enantioselectivity of lipases by sol-gel
immobilization: further advancements of practical interest.
Nanoscale 2014, 6 (12), 6220-6228; (c) Mohamad, N. R.; Marzuki, N.
H. C.; Buang, N. A.; Huyop, F.; Wahab, R. A., An overview of
technologies for immobilization of enzymes and surface analysis
techniques for immobilized enzymes. Biotechnology &
10. (a) Collot, J.; Gradinaru, J.; Humbert, N.; Skander, M.; Zocchi,
Biotechnological Equipment 2015, 29 (2), 205-220; (d) Matte, C. R.;
Bussamara, R.; Dupont, J.; Rodrigues, R. C.; Hertz, P. F.; Ayub, M.
A. Z., Immobilization of Thermomyces lanuginosus Lipase by
Different Techniques on Immobead 150 Support: Characterization
and Applications. Applied Biochemistry and Biotechnology 2014, 172
A.; Ward, T. R., Artificial Metalloenzymes for Enantioselective
Catalysis Based on Biotin-Avidin. J. Am. Chem. Soc. 2003, 125,
9030; (b) Reetz, M. T.; Peyralans, J. J. P.; Maichele, A.; Fu, Y.;
Maywald, M., Directed Evolution of Hybrid Enzymes: Evolving
Enantioselectivity of an Achiral Rh-Complex Anchored to a Protein.
Chem. Commun. 2006, 4318; (c) Wilson, M. E.; Whitesides, G. M.,
Conversion of a Protein to a Homogeneous Asymmetric
Hydrogenation Catalyst by Site-Specific Modification with a
Diphosphinerhodium(I) Moiety. J. Am. Chem. Soc. 1978, 100, 306.
(5), 2507-2520; (e) Sittko, I.; Kremser, K.; Roth, M.; Kuehne, S.;
Stuhr, S.; Tiller, J. C., Amphiphilic polymer conetworks with defined
nanostructure and tailored swelling behavior for exploring the
activation of an entrapped lipase in organic solvents. Polymer 2015,
64, 122-129; (f) Dech, S.; Wruk, V.; Fik, C. P.; Tiller, J. C.,
11. (a) Podtetenieff, J.; Taglieber, A.; Bill, E.; Reijerse, E. J.; Reetz,
Amphiphilic polymer conetworks derived from aqueous solutions for
biocatalysis in organic solvents. Polymer 2012, 53 (3), 701-707; (g)
Plothe, R.; Sittko, I.; Lanfer, F.; Fortmann, M.; Roth, M.; Kolbach, V.;
Tiller, J. C., Poly(2-ethyloxazoline) as matrix for highly active
electrospun enzymes in organic solvents. Biotechnology and
Bioengineering 2016, n/a-n/a; (h) Savin, G.; Bruns, N.; Thomann, Y.;
Tiller, J. C., Nanophase Separated Amphiphilic Microbeads.
Macromolecules 2005, 38 (18), 7536-7539.
M. T., An Artificial Metalloenzyme: Creation of a Designed Copper
Binding Site in a Thermostable Protein. Angew. Chem., Int. Ed. 2010,
49, 5151; (b) Reetz, M. T.; Jiao, N., Copper–Phthalocyanine
Conjugates of Serum Albumins as Enantioselective Catalysts in
Diels–Alder Reactions. Angew. Chem., Int. Ed. 2006, 45, 2416.
12. (a) Quinto, T.; Haussinger, D.; Kohler, V.; Ward, T. R., Artificial
metalloenzymes for the diastereoselective reduction of NAD+ to
NAD2H. Organic & Biomolecular Chemistry 2015, 13 (2), 357-360;
5.
Bruns, N.; Bannwarth, W.; Tiller, J. C., Amphiphilic conetworks
(
b) Quinto, T.; Koehler, V.; Ward, T. R., Recent Trends in Biomimetic
Nadh Regeneration. Top. Catal. 2014, 57, 321.
3. (a) Koehler, V.; Mao, J.; Heinisch, T.; Pordea, A.; Sardo, A.;
as activating carriers for the enhancement of enzymatic activity in
supercritical CO2. Biotechnology and Bioengineering 2008, 101 (1),
1
1
9-26.
Schoenfeld, I.; Dech, S.; Ryabenky, B.; Daniel, B.; Glowacki,
Wilson, Y. M.; Knoerr, L.; Creus, M.; Prost, J. C.; Schirmer, T.,
Oso4·Streptavidin: A Tunable Hybrid Catalyst for the
Enantioselective Cis-Dihydroxylation of Olefins. Angew. Chem., Int.
Ed. 2011, 50, 10863; (b) Kokubo, T.; Sugimoto, T.; Uchida, T.;
Tanimoto, S.; Okano, M., The Bovine Serum Albumin-2-
Phenylpropane-1,2-Diolatodioxo-Osmium(Vi) Complex as an
Enantioselective Catalyst for Cis-Hydroxylation of Alkenes. J. Chem.
Soc., Chem. Commun. 1983, 0, 769; (c) Jonsson, S. Y.; Färnegårdh,
K.; Bäckvall, J.-E., Osmium-Catalyzed Asymmetric Dihydroxylation
of Olefins by H2O2 Using a Biomimetic Flavin-Based Coupled
Catalytic System. Journal of the American Chemical Society 2001,
6.
B.; Ladisch, R.; Tiller, J. C., Investigations on Diffusion Limitations of
Biocatalyzed Reactions in Amphiphilic Polymer Conetworks in
Organic Solvents. Biotechnology and Bioengineering 2013, 110 (9),
2
333-2342.
(a) Deuss, P. J.; den Heeten, R.; Laan, W.; Kamer, P. C. J.,
7.
Bioinspired Catalyst Design and Artificial Metalloenzymes. Chem. -
Eur. J. 2011, 17, 4680; (b) Yu, F. T.; Cangelosi, V. M.; Zastrow, M.
L.; Tegoni, M.; Plegaria, J. S.; Tebo, A. G.; Mocny, C. S.; Ruckthong,
L.; Qayyum, H.; Pecoraro, V. L., Protein Design: Toward Functional
Metalloenzymes. Chem. Rev. 2014, 114, 3495; (c) Schwizer, F.;
Okamoto, Y.; Heinisch, T.; Gu, Y.; Pellizzoni, M. M.; Lebrun, V.;
Reuter, R.; Köhler, V.; Lewis, J. C.; Ward, T. R., Artificial
Metalloenzymes: Reaction Scope and Optimization Strategies.
Chemical Reviews 2017; (d) Trindler, C.; Ward, T. R., Artificial
Metalloenzymes. In Effects of Nanoconfinement on Catalysis, Poli,
R., Ed. Springer International Publishing: Cham, 2017; pp 49-82; (e)
Lu, Y.; Berry, S. M.; Pfister, T. D., Engineering Novel
123 (7), 1365-1371; (d) Fujieda, N.; Nakano, T.; Taniguchi, Y.;
Ichihashi, H.; Sugimoto, H.; Morimoto, Y.; Nishikawa, Y.; Kurisu, G.;
Itoh, S., A Well-Defined Osmium–Cupin Complex: Hyperstable
Artificial Osmium Peroxygenase. Journal of the American Chemical
Society 2017, 139 (14), 5149-5155.
14. (a) Fernández-Gacio, A.; Codina, A.; Fastrez, J.; Riant, O.;
Soumillion, P., Transforming Carbonic Anhydrase into Epoxide
Synthase by Metal Exchange. ChemBioChem 2006, 7 (7), 1013-
Metalloproteins: Design of Metal-Binding Sites into Native Protein
Scaffolds. Chem. Rev. 2001, 101, 3047; (f) Pellizzoni, M. M.;
Schwizer, F.; Wood, C. W.; Sabatino, V.; Cotelle, Y.; Matile, S.;
1016; (b) Allard, M.; Dupont, C.; Munoz Robles, V.; Doucet, N.;
Lledos, A.; Marechal, J. D.; Urvoas, A.; Mahy, J. P.; Ricoux, R.,
Incorporation of Manganese Complexes into Xylanase: New Artificial
This article is protected by copyright. All rights reserved.