benzylammonium chloride (TEBAC) under conditions first
defined by M a¸ kosza.5 Despite the propensity of gem-
dihalogenocyclopropanes carrying electron-donating substit-
6
uents to undergo facile electrocyclic ring cleavage, these
adducts proved to be rather stable and generally crystalline
materials. Indeed, the structures of compounds 4 and 6 were
7
confirmed by single-crystal X-ray analysis. In contrast,
however, no success was had in efforts to isolate the
dichlorocarbene adducts of the morpholino-based enamines
derived from indan-1-one and cyclopentanone or the same
types of adducts from the pyrrolidine-derived enamines of
R-tetralone or cyclohexanone. In each instance only complex
mixtures of materials were obtained. Interestingly, attempts
to add dichlorocarbene to the double bond of the readily
prepared amino-substituted cinnamate 11 delivered, as the
only isolable material, what is tentatively identified as the
dichlorocarbene insertion product 12 (11%).
Table 1. Products Derived from Base-Promoted Reactions of
Compounds 1-10a
temp time
yield
(%)
entry substrate
base
LDA
LDA
LDA
LDA
t-BuOK
LDA
t-BuOK
t-BuOK
LDA
(°C)
(h)
product
b,c,d
c,e
1
2
3
4
5
6
7
8
9
0
1
2
1
2
3
4
4
5
5
6
7
8
9
0
0
0
3
3
3
13
14
15
82
66
54
f
g
d
0
5
16
43
0
0
0.5
3
16
17
28
45
18
18
0
16
22
8
17
30-35
79
d,h
d
18
NRi
19
1
1
1
LDA
LDA
LDA
0
3
81
0
0
8
8
NR
NR
10
a
All reactions were carried out using THF as solvent, except for entry
b
c
5
where 1:1 v/v THF/DMSO was used. Reference 3a. Reference 3e.
d
Reference 3f. e Reference 3b. Reference 8. g Reference 9. h Reference 3c.
f
i
NR ) no reaction.
studies also revealed that lithium diisopropylamide (LDA)
was a superior base to t-BuOK. The structures of the products
were established by standard spectroscopic methods and
confirmed through the single-crystal X-ray analyses of
7
compound 16 and a derivative of congener 17 (vide infra).
The selective and efficient formation of the pyrrolo[2,1-a]-
isoquinoline-type system 17 over its pyrrolo[1,2-b]isoquino-
line-based isomer is noteworthy.
(3) (a) Ohno, M. Tetrahedron Lett. 1963, 1753. (b) Wolinsky, J.; Chan,
The reaction of substrates 1-5 with base at 0-18 °C for
.5-5.0 h produced the expected outcomes in that the
corresponding pyrroles, 13-17 respectively, were obtained
in yields ranging from 28-82% (Table 1, entries 1-7). Such
D.; Novak, R. Chem. Ind. (London, UK) 1965, 720. (c) Pandit, U. K.; de
Graaf, S. A. G.; Braams, C. T.; Raaphorst, J. S. T. Recl. TraV. Chim. Pays-
Bas 1972, 91, 799. (d) de Graaf, S. A. G.; Pandit, U. K. Tetrahedron 1973,
29, 2141. (e) M a¸ kosza, M.; Kacprowicz, A. Bull. Acad. Pol. Sci., Chim.
0
1
974, 22, 467. (f) Graefe, J.; Adler, M.; Muehlstaedt, M. Z. Chem. 1975,
15, 14.
(
4) This work was undertaken as part of a program within our group to
(
2) For useful points of entry into the literature detailing new methods
exploit gem-dihalogenocyclopropanes as building blocks for chemical
synthesis. For representative publications, see: (a) Banwell, M. G.; Gable,
R. W.; Peters, S. C.; Phyland, J. R. J. Chem. Soc., Chem. Commun. 1995,
1395. (b) Banwell, M.; Edwards, A.; Harvey, J.; Hockless, D.; Willis, A.
J. Chem. Soc., Perkin Trans. 1 2000, 2175. (c) Banwell, M. G.; Harvey, J.
E.; Hockless, D. C. R.; Wu, A. W. J. Org. Chem. 2000, 65, 4241. (d)
Banwell, M. G.; Ebenbeck, W.; Edwards, A. J. J. Chem. Soc., Perkin Trans.
1 2001, 114. (e) Banwell, M. G.; Harvey, J. E.; Jolliffe, K. A. J. Chem.
Soc., Perkin Trans. 1 2001, 2002. (f) Banwell, M. G.; Edwards, A. J.;
Jolliffe, K. A.; Smith, J. A.; Hamel, E.; Verdier-Pinard, P. Org. Biomol.
Chem. 2003, 1, 296. (g) Taylor, R. M. Aust. J. Chem. 2003, 56, 631. (h)
Banwell, M. G.; Sydnes, M. O. Aust. J. Chem. 2004, 57, 537. (i) See
reference 2b. (j) See reference 1. (k) Banwell, M. G.; Vogt, F.; Wu, A. W.
Aust. J. Chem. 2006, 59, 415. (l) Banwell, M. G.; Phillis, A. T.; Willis, A.
C. Org. Lett. 2006, 8, 5341. For a review of certain aspects of our work in
this area, see reference 2c.
for the synthesis of pyrroles, their biogenesis, and their chemical manipula-
tion, see: (a) Reisser, M.; Maas, G. J. Org. Chem. 2004, 69, 4913. (b)
Agarwal, S.; Kn o¨ lker, H.-J. Org. Biomol. Chem. 2004, 2, 3060. (c) Banwell,
M. G.; Beck, D. A. S.; Stanislawski, P. C.; Sydnes, M. O.; Taylor, R. M.
Curr. Org. Chem. 2005, 9, 1589. (d) Blaszykowski, C.; Aktoudianakis, E.;
Bressy, C.; Alberico, D.; Lautens, M. Org. Lett. 2006, 8, 2043. (e) Hiroya,
K.; Matsumoto, S.; Ashikawa, M.; Ogiwara, K.; Sakamoto, T. Org. Lett.
006, 8, 5349. (f) Crawley, M. L.; Goljer, I.; Jenkins, D. J.; Mehlmann, J.
F.; Nogle, L.; Dooley, R.; Mahaney, P. E. Org. Lett. 2006, 8, 5837. (g)
Walsh, C. T.; Garneau-Tsodikova, S.; Howard-Jones, A. R. Nat. Prod. Rep.
2
2
006, 23, 517. (h) Banwell, M. G.; Goodwin, T. E.; Ng, S.; Smith, J. A.;
Wong, D. J. Eur. J. Org. Chem. 2006, 3043. (i) T o´ th, J.; Nedves, A.; Dancs o´ ,
A.; Blask o´ , G.; T _o ke, L.; Nyerges, M. Synthesis 2007, 1003. (j) Pan, Y.;
Lu, H.; Fang, Y.; Fang, X.; Chen, L.; Qian, J.; Wang, J.; Li, C. Synthesis
2
007, 1242.
5422
Org. Lett., Vol. 9, No. 26, 2007