Advanced Synthesis & Catalysis
10.1002/adsc.202000494
R. Tepper, U. S. Schubert, Angew. Chem. Int. Ed. 2018, [12] a) R. Leardini, D. Nanni, A. Tundo, G. Zanardi, F.
5
9
7, 6004; c) R. L. Sutar, S. M. Huber, ACS Catal. 2019,
, 9622.
Ruggieri, J. Org. Chem. 1992, 57, 1842; b) S. Tanaka, M.
Yasuda, A. Baba, J. Org. Chem. 2006, 71, 800; c) N.
Shindoh, H. Tokuyama, K. Takasu, Tetrahedron Lett.
[
9] For selected examples on XB catalysis see: a) A.
Bruckmann, M. A. Pena, C. Bolm, Synlett 2008, 900; b)
O. Coulembier, F. Meyer, P. Dubois, Polym. Chem. 2010,
2
007, 48, 4749; d) N. Shindoh, H. Tokuyama, Y.
Takemoto, K. Takasu, J. Org. Chem. 2008, 73, 7451; e)
K. Pericherla, A. Kumar, A. Jha, Org. Lett. 2013, 15,
1
, 434; c) F. Kniep, S. H. Jungbauer, Q. Zhang, S. M.
4
078; f) J. B. Simões, Â. de F´atima, A. A. Sabino, L. C.
Walter, S. Schindler, I. Schnapperelle, E. Herdtweck, S.
M. Huber, Angew. Chem., Int. Ed. 2013, 52, 7028; d) W.
A. Barbosac, S. A. Fernandes, RSC Adv., 2014, 4, 18612.
He, Y.-C. Ge, C.-H. Tan, Org. Lett. 2014, 16, 3244; e) H. [13] T. T. Dang, F. Boeck, L. Hintermann, J. Org. Chem.
Nakatsuji, Y. Sawamura, A. Sakakura, K. Ishihara,
Angew. Chem. Int. Ed. 2014, 53, 6974; f) S. H. Jungbauer,
S. M. Huber, J. Am. Chem. Soc. 2015, 137, 12110; g) Y.
Takeda, D. Hisakuni, C. H. Lin, S. Minakata, Org. Lett.
2011, 76, 9353.
2
015, 17, 318; h) A. Matsuzawa, S. Takeuchi, K. Sugita,
Chem. Asian J. 2016, 11, 2863; i) I. Kazi, S. Guha, G.
Sekar, Org. Lett. 2017, 19, 1244; j) M. Saito, Y.
Kobayashi, S. Tsuzuki, Y. Takemoto, Angew. Chem., Int.
Ed. 2017, 56, 7653; k) D. von der Heiden, S. Bozkus, M.
Klussmann, M. Breugst, J. Org. Chem. 2017, 82, 4037;
l) S. Kuwano, T. Suzuki, T. Arai, Heterocycles, 2018, 97,
1
63; m) Y. Kobayashi, Y. Nakatsuji, S. Li, S. Tsuzuki,
Y. Takemoto, Angew. Chem. Int. Ed. 2018, 57, 3646; n)
Y.-C. Chan, Y.-Y. Yeung, Angew. Chem. Int. Ed. 2018,
5
7, 3483; o) R. Haraguchi, S. Hoshino, M. Sakai, S.
Tanazawa, Y. Morita, T. Komatsu, S. Fukuzawa, Chem.
Commun. 2018, 54, 10320; p) K. Matsuzaki, H. Uno, E.
Tokunaga, N. Shibata, ACS Catal. 2018, 8, 6601; q) T.
Horibe, Y. Tsuji, K. Ishihara, ACS Catal. 2018, 8, 6362;
r) F. Heinen, E. Engelage, A. Dreger, R. Weiss, S. M.
Huber, Angew. Chem., Int. Ed. 2018, 57, 3830; s) Y. Lu,
H. Nakatsuji, Y. Okumura, L. Yao, Ka, Ishihara, J. Am.
Chem. Soc. 2018, 140, 6039; t) C. Xu, C. C. J. Loh, J.
Am. Chem. Soc. 2019, 141, 5381; u) Y.-C. Chan, Y.-Y.
Yeung, Org. Lett. 2019, 21, 5665; v) R. A. Squitieri, K.
P. Fitzpatrick, A. A. Jaworski, K. A. Scheidt, Chem. Eur.
J. 2019, 25, 10069; w) T. Arai, K. Horigane, O.
Watanabe, J. Kakino, N. Sugiyama, H. Makino, Y.
Kamei, S. Yabe, M. Yamanaka, iScience 2019, 12, 280;
x) S. Kuwano, T. Suzuki, M. Yamanaka, R. Tsutsumi, T.
Arai, Angew. Chem., Int. Ed. 2019, 58, 10220; y) X. Liu,
S. Ma, P. H. Toy, Org. Lett. 2019, 21, 9212; z) R. L.
Sutar, E. Engelage, R. Stoll, S. M. Huber, Angew. Chem.
Int. Ed. 2020, 59, 6806.
[
10] For synthesis of 4-(1H-indol-2-yl) tetrahydroquinolines
via Povarov reaction, see: a) G. Bergonzini, L. Gramigna,
A. Mazzanti, M. Fochi, L. Bernardi, A. Ricci, Chem.
Commun. 2010, 46, 327; b) H.-G. Cheng, C.-B. Chen, F.
Tan, N.-J. Chang, J.-R. Chen, W.-J. Xiao, Eur. J. Org.
Chem. 2010, 4976; c) M. R. Zanwar, S. D. Gawande, V.
Kavala, C.-W. Kuo, C.-F. Yao, Adv. Synth. Catal. 2014,
3
56, 3849; d) W. Dai, X.-L. Jiang, J.-Y. Tao, F. Shi, J.
Org. Chem. 2016, 81, 185; e) L. Bernardi, G. Bolzoni, M.
Fochi, M. Mancinelli, A. Mazzanti, Eur. J. Org. Chem.
2
016, 3208; f) D. Stevanović, G. Bertuzzi, A. Mazzanti,
M. Fochi, L. Bernardi, Adv. Synth. Catal. 2018, 360, 893.
[
11] For synthesis of 4-(1H-indol-2-yl)quinolines, see: B.
Harish, M. Subbireddy, S. Suresh, Chem. Commun. 2017,
5
3, 3338.
5
This article is protected by copyright. All rights reserved.