Journal of the American Chemical Society
Page 4 of 5
New Investigator Grant, and NSF XSEDE (CHE160059). S.A.K.
(14) Enemark, J. H.; Feltham, R. D. Principles of Structure, Bond-
ing, and Reactivity for Metal Nitrosyl Complexes. Coord.
Chem. Rev. 1974, 13, 339–406.
1
2
3
4
5
6
7
8
9
1
1
1
1
1
1
1
1
1
1
2
2
2
2
2
2
2
2
2
2
3
3
3
3
3
3
3
3
3
3
4
4
4
4
4
4
4
4
4
4
5
5
5
5
5
5
5
5
5
5
6
acknowledges the Heavy Element Chemistry Program by the
Division of Chemical Sciences, Geosciences, and Biosciences,
Office of Basic Energy Sciences (BES), U.S. Department of En-
ergy, and Seaborg Institute Postdoctoral Fellowship (S.C.E.S.).
LANL is operated by Los Alamos National Security, LLC, for the
National Nuclear Security Administration of U.S. DOE (DE-
AC52-06NA25396). Use of Stanford Synchrotron Radiation Light
source, SLAC National Accelerator Laboratory, supported by
DOE, Office of Science, BES (DE-AC02-76SF00515).
(
15) Evans, W. J.; Fang, M.; Bates, J. E.; Furche, F.; Ziller, J. W.;
Kiesz, M. D.; Zink, J. I. Isolation of a radical dianion of nitro-
2-
gen oxide (NO) . Nat. Chem. 2010, 2, 644–647.
(16) Ohta, K.; Muramoto, K.; Shinzawa-Itoh, K.; Yamashita, E.;
Yoshikawa, S.; Tsukihara, T. X-Ray Structure of the NO-
Bound CuB in Bovine Cytochrome c Oxidase. Acta Crystal-
logr. Sect. F. 2010, 66, 251–253.
(
17) Tocheva, E. I.; Rosell, F. I.; Mauk, A. G.; Murphy, M. E. P.
Side-on Copper-Nitrosyl Coordination by Nitrite Reductase.
Science 2004, 304, 867–870.
REFERENCES
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
(
(
(
1)
2)
3)
Ravishankara, A. R.; Daniel, J. S.; Portmann, R. W. Nitrous
Oxide (N O): The Dominant Ozone-Depleting Substance Emit-
ted in the 21st Century. Science 2009, 326, 123–125.
Reay, D. S.; Davidson, E. A.; Smith, K. A.; Smith, P.; Melillo,
J. M.; Dentener, F.; Crutzen, P. J. Global agriculture and ni-
trous oxide emissions. Nat. Clim. Change 2012, 2, 410–416.
Thomson, A. J.; Giannopoulos, G.; Pretty, J.; Baggs, E. M.;
Richardson, D. J. Biological sources and sinks of nitrous oxide
and strategies to mitigate emissions. Phil. Trans. R. Soc. B
2012, 367, 1157–1168.
(18) Usov, O. M.; Sun, Y.; Grigoryants, V. M.; Shapleigh, J. P.;
Scholes, C. P. EPR-ENDOR of the Cu(I)NO Complex of Nitrite
Reductase. J. Am. Chem. Soc. 2006, 128, 13102–13111.
(19) Fujisawa, K.; Tateda, A.; Miyashita, Y.; Okamoto, K.; Paulat,
F.; Praneeth, V. K. K.; Merkle, A.; Lehnert, N. Structural and
Spectroscopic Characterization of Mononuclear copper(I)
Nitrosyl Complexes: End-on versus Side-on Coordination of
NO to copper(I). J. Am. Chem. Soc. 2008, 130, 1205–1213.
(20) Wasbotten, I. H.; Ghosh. A. Modeling Side-on NO
2
Coordination to Type
2 Copper in Nitrite Reductase:
(4)
Shiro, Y.; Sugimoto, H.; Tosha, T.; Nagano, S.; Hino, T.
Structural Basis for Nitrous Oxide Generation by Bacterial
Nitric Oxide Reductases. Phil. Trans. R. Soc. B 2012, 367,
Structures, Energetics, and Bonding. J. Am. Chem. Soc. 2005,
127, 15384-15385.
(21) Ghosh, S.; Dey, A.; Usov, O. M.; Sun, Y.; Grigoryants, V. M.;
Scholes, C. P.; Solomon, E. I. Resolution of the Spectroscopy
versus Crystallography Issue for NO Intermediates of Nitrite
Reductase from Rhodobacter Sphaeroides. J. Am. Chem. Soc.
2007, 129, 10310–10311.
(22) Merkle, A. C.; Lehnert, N. The Side-on copper(I) Nitrosyl
Geometry in Copper Nitrite Reductase Is due to Steric
Interactions with Isoleucine-257. Inorg. Chem. 2009, 48,
11504–11506.
(23) Puiu, S. C.; Warren, T. H. Three-Coordinate-Diketiminato
Nickel Nitrosyl Complexes from Nickel(I)-Lutidine and
Nickel(II) - Alkyl Precursors. Organometallics 2003, 22 3974–
3976.
(24) Kundu, S.; Stieber, S. C. E.; Ferrier, M. G.; Kozimor, S. A.;
Bertke, J. A.; Warren, T. H. Redox Non-Innocence of
Nitrosobenzene at Nickel. Angew. Chem. Int. Ed. 2016, 55,
10321–10325.
1
195–1203.
(
(
(
5)
6)
7)
McQuarters, A. B.; Wirgau, N. E.; Lehnert, N. Model
Complexes of Key Intermediates in Fungal Cytochrome P450
Nitric Oxide Reductase (P450nor). Curr. Opin. Chem. Biol.
2
014, 19, 82–89.
Merkle, A. C.; Lehnert, N. Binding and Activation of Nitrite
and Nitric Oxide by Copper Nitrite Reductase and
Corresponding Model Complexes. Dalton Trans. 2012, 41,
3355–3368.
(a) Blomberg, M. R. A.; Siegbahn, P. E. M. Mechanism for
N
2
O Generation in Bacterial Nitric Oxide Reductase: A Quan-
tum Chemical Study. Biochemistry 2012, 51, 5173-5186. (b)
Metz, S. N O Formation via Reductive Disproportionation of
2
NO by Mononuclear Copper Complexes: A Mechanistic DFT
Study. Inorg. Chem. 2017, 56, 3820-3833. (c) Suzuki, T.;
Tanaka, H.; Shiota, Y.; Sajith, P. K.; Arikawa, Y.; Yoshizawa,
K. Proton-Assisted Mechanism of NO Reduction on
a
(25) (a) Hayton, T. W.; Legzdins, P.; Sharp, W. B. Coordination and
Organometallic Chemistry of Metal-NO Complexes. Chem.
Rev. 2002, 102, 935-991. (b) Böhmer, J.; Haselhorst, G.;
Wieghardt, K.; Nuber, B. The First Mononuclear
Dinuclear Ruthenium Complex. Inorg. Chem. 2015, 54, 7181–
7191.
(
8)
Arikawa, Y.; Asayama, T.; Moriguchi, Y.; Agari, S.; Onishi,
M. Reversible N-N Coupling of NO Ligands on Dinuclear Ru-
Nitrosyl(oxo)molybdenum Complex: Side-On Bonded and µ
3
-
2
thenium Complexes and Subsequent N O Evolution: Relevance
to Nitric Oxide Reductase. J. Am. Chem. Soc. 2007, 129,
14160–14161.
bridging NO Ligands in [{MoL(NO)(O)(OH)} NaPF •H O.
2
6
2
Angew. Chem. Int. Ed. 1994, 20, 1473–1476.
(26) Neese, F. Orca: an ab initio, DFT and Semiempirical Electronic
Structure Package, Version 3.0.3; Max Planck Institute for
Chemical Energy Conversion; Mülheim an der Ruhr, Germany.
(27) (a) Tomson, N. C.; Crimmin, M. R.; Petrenko, T.; Rosebrugh,
L. E.; Sproules, S.; Boyd, W. C.; Bergman, R. G.; Debeer, S.;
Toste, F. D.; Wieghardt, K. A Step Beyond the Feltham-
Enenark Notation: Spectroscopic and Correlated ab Initio
Computational Support for an Antiferromagnetically Coupled
(9)
Lionetti, D.; de Ruiter, G.; Agapie, T. A Trans-Hyponitrite
Intermediate in the Reductive Coupling and Deoxygenation of
Nitric Oxide by a Tricopper-Lewis Acid Complex. J. Am.
Chem. Soc. 2016, 138, 5008-5011.
(
10) Wijeratne, G. B.; Hematian, S.; Siegler, M. A.; Karlin, K. D.
Copper(I)/NO(g)Reductive Coupling Producing Trans-
a
Hyponitrite Bridged Dicopper(II) Complex: Redox Reversal
Giving Copper(I)/NO(g)Disproportionation. J. Am. Chem. Soc.
-
M(II)-(NO) Description of Tp*M(NO)(M = Co, Ni). J. Am.
2
017, 139, 13276–13279.
11) Wright, A. M.; Zaman, H. T.; Wu, G.; Hayton, T. W. Mecha-
nistic Insights into the Formation of N O by a Nickel Nitrosyl
Complex. Inorg. Chem. 2014, 53, 3108–3116.
12) (a) Wright, A. M.; Hayton, T. W. Understanding the Role of
Hyponitrite in Nitric Oxide Reduction. Inorg. Chem. 2015, 54,
Chem. Soc. 2011, 133, 18785-18801. (b) Soma, S.; Van Stap-
pen, C.; Kiss, M.; Szilagyi, R. K.; Lehnert, M.; Fujisawa, K.
Distorted tetrahedral nickel-nitrosyl complexes: spectroscopic
characterization and electronic structure. J. Biol. Inorg. Chem.
2016, 21, 757-775.
(
(
2
(28) Yao, S.; Bill, E.; Milsmann, C.; Wieghardt, K.; Driess, M. A
9
330–9341. (b) Arikawa, Y.; Onishi, M. Reductive N-N Cou-
pling of NO Molecules on Transition Metal Complexes Lead-
ing to N O. Coord. Chem. Rev. 2012, 256, 468–478.
“side-On” superoxonickel Complex [LNi(O )] with a Square-
2
Planar Tetracoordinate Nickel(II) Center and Its Conversion in-
2
to [LNi(µ-OH) NiL]. Angew. Chem. Int. Ed. 2008, 47, 7110–
2
(
13) Fomitchev, D. V.; Furlani, T. R.; Coppens, P. Combined X-
7113.
5
Ray Diffraction and Density Functional Study of [Ni(NO)(η -
Cp*)] in the Ground and Light-Induced Metastable States. In-
org. Chem. 1998, 37, 1519–1526.
ACS Paragon Plus Environment