C. Thomas et al. / Journal of Molecular Catalysis A: Chemical 249 (2006) 71–79
79
In this mechanism, ad-NO2 species react with C3H6 to form
ad-RNOx compounds that further decompose to NO and oxy-
genates (CxHyOz). The role of these oxygenates is to reduce the
support to provide the sites responsible for NO decomposition
to N2 (Ce3+ surface cations).
[9] C. Thomas, O. Gorce, C. Fontaine, J.-M. Krafft, F. Villain, G. Dje´ga-
Mariadassou, Appl. Catal. B: Environ. 63 (2006) 201.
[10] R. Burch, P.J. Millington, A.P. Walker, Appl. Catal. B: Environ. 4 (1994)
65.
[11] F. Fajardie, J.-F. Tempe`re, J.-M. Manoli, O. Touret, G. Blanchard, G.
Dje´ga-Mariadassou, J. Catal. 179 (1998) 469.
The much higher activity of the Pd-based catalysts in the
SCR of NOx assisted by C3H6 might be attributed to the greater
ability of the PdOx phase to adsorb NO2. This property might
be assigned to the lower interaction of the PdOx phase with CZ
compared with that of the PtOx or RhOx phases.
[12] S.H. Overbury, D.R. Mullins, in: A. Trovarelli (Ed.), Ceria Surfaces and
Films for Model Catalytic Studies Using Surface Analysis Techniques,
Imperial College Press, London, 2002, p. 328.
[13] F. Fajardie, J.-F. Tempe`re, G. Dje´ga-Mariadassou, G. Blanchard, J. Catal.
163 (1996) 77.
[14] L. Salin, C. Potvin, J.-F. Tempe`re, M. Boudart, G. Dje´ga-Mariadassou,
J.-M. Bart, Ind. Eng. Chem. Res. 37 (1998) 4531.
Although appreciable SCR of NOx to N2 is achieved on the
CZ-supported catalysts, enhancement of the activities is still
needed to comply with most recent emission regulations. The
proposeddeNOx mechanism(Fig. 5), whoseobviouscomplexity
lies in the fact that the three catalytic cycles have to turn over
simultaneously, suggests ways in which deNOx activity could
be improved. Superior activity in the NO oxidation reaction is
to be obtained (Fig. 5, cycle 1), as the evaluated catalysts do not
allow for maximum production of NO2 that remains far from
thermodynamic equilibrium at maximum N2 formation (Fig. 2).
Improvement of the selective mild oxidation of C3H6 remains a
very challenging task (Fig. 5, cycle 2), as this moderate oxidation
process always competes with total oxidation [44]. The quality
of the catalytic sites responsible for the decomposition of NO
(Fig. 5, cycle 3) might also be considered. These different issues
are currently being investigated in our group.
[15] A. Michalowicz, Logiciels pour la chimie, Socie´te´ Franc¸aise de Chimie,
Paris, 1991, p. 102.
[16] A. Michalowicz, J. Phys. IV France 7 (1997) 235.
[17] I. Manuel, J. Chaubet, C. Thomas, H. Colas, N. Matthess, G. Dje´ga-
Mariadassou, J. Catal. 224 (2004) 269.
[18] C. Fontaine, C. Thomas, J.-M. Krafft, O. Gorce, F. Villain, G. Dje´ga-
Mariadassou, in preparation.
[19] S. Bernal, G. Blanco, J.M. Gatica, C. Larese, H. Vidal, J. Catal. 200
(2001) 411.
[20] C. Yokoyama, M. Misono, J. Catal. 150 (1994) 9.
[21] T. Okuhara, Y. Hasada, M. Misono, Catal. Today 35 (1997) 83.
[22] K.O. Haj, S. Ziyade, M. Ziyad, F. Garin, Appl. Catal. B: Environ. 37
(2002) 49.
[23] O. Gorce, F. Baudin, C. Thomas, P. Da Costa, G. Dje´ga-Mariadassou,
Appl. Catal. B: Environ. 54 (2004) 69.
[24] S. Bernal, J.J. Calvino, J.M. Gatica, C. Lo´pez Cartes, J.M. Pintado, in: A.
Trovarelli (Ed.), Chemical and Nanostructural Aspects of the Preparation
and Characterisation of Ceria and Ceria-Based Mixed Oxide-Supported
Metal Catalysts, Imperial College Press, London, 2002, p. 85.
[25] J.C. Summers, S.A. Ausen, J. Catal. 58 (1979) 131.
[26] T. Tanaka, T. Okuhara, M. Misono, Appl. Catal. B: Environ. 4 (1994)
L1.
Acknowledgments
[27] R. Burch, T.C. Watling, Catal Lett. 37 (1996) 51.
[28] R. Burch, T.C. Watling, Appl. Catal. B: Environ. 11 (1997) 207.
[29] M. Niwa, Y. Furukawa, Y. Murakami, J. Colloid Interface Sci. 86 (1982)
260.
[30] A. Martinez-Arias, J. Soria, J.C. Conesa, X.L. Soane, A. Arcoya, R.
Cataluna, J. Chem. Soc. Faraday Trans. 91 (1995) 1679.
[31] S.H. Overbury, D.R. Mullins, D.R. Huntley, Lj. Kundakovic, J. Catal.
186 (1999) 296.
Rhodia contributed to part of the financial support for this
`
´
work; the Ministere de l’Enseignement Superieur et de la
Recherche organisation supported the work of Dr. O. Gorce
(Grant 98-4-10713). We also thank G. Blanchard for his interest
in this work and P. Lavaud for his invaluable help in technical
support.
[32] M. Daturi, N. Bion, J. Saussey, J.-C. Lavalley, C. Hedouin, T. Seguelon,
G. Blanchard, Phys. Chem. Chem. Phys. 3 (2001) 252.
[33] G. Dje´ga-Mariadassou, F. Fajardie, J.-F. Tempe`re, J.-M. Manoli, O.
Touret, G. Blanchard, J. Mol. Catal. A: Chem. 161 (2000) 179.
[34] R. Burch, P.J. Millington, Catal. Today 29 (1996) 37.
[35] G.R. Bamwenda, A. Ogata, A. Obuchi, J. Oi, K. Mizuno, J. Skrzypek,
Appl. Catal. B: Environ. 6 (1995) 311.
References
[1] R.J. Farrauto, R.M. Heck, Catal. Today 55 (2000) 179.
[2] V.I. Paˆrvulescu, P. Grange, B. Delmon, Catal. Today 46 (1998) 233.
[3] R. Burch, J.P. Breen, F.C. Meunier, Appl. Catal. B: Environ. 39 (2002)
283.
[4] Y. Traa, B. Burger, J. Weitkamp, J. Chem. Soc. Chem. Commun. 21
(1999) 2187.
[5] J. Perez-Ramirez, F. Kapteijn, K. Schoffel, J.A. Moulijn, Appl. Catal.
B: Environ. 44 (2003) 117.
[6] S.N. Orlik, V.L. Struzhko, T.V. Mironyuk, G.M. Tel’biz, Theor. Exp.
Chem. 37 (2001) 311.
[36] N.W. Cant, W.K. Hall, J. Catal. 16 (1970) 220.
[37] G. Dje´ga-Mariadassou, Catal. Today 90 (2004) 27.
[38] G. Dje´ga-Mariadassou, M. Boudart, J. Catal. 216 (2003) 89.
[39] J. Li, J. Hao, L. Fu, T. Zhu, Topics Catal. 30–31 (2004) 81.
[40] H. Shinjoh, T. Tanabe, K. Yokota, M. Sugiura, Topics Catal. 30–31
(2004) 319.
[7] G. Centi, P. Fornasiero, M. Graziani, J. Kasˇpar, F. Vazzana, Topics Catal.
16–17 (2001) 157.
[8] L.F. Liotta, A. Longo, A. Macaluso, A. Martorana, G. Pantaleo, A.M.
Venezia, G. Deganello, Appl. Catal. B: Environ. 48 (2004) 133.
[41] R. Burch, T.C. Watling, Catal Lett. 43 (1997) 19.
[42] T. Okuhara, Y. Hasada, M. Misono, Catal. Today 35 (1997) 83.
[43] R. Burch, J.A. Sullivan, T.C. Watling, Catal. Today 42 (1998) 13.
[44] J. Haber, W. Turek, J. Catal. 190 (2000) 320.