Acknowledgements
Technical support from the National Research Centre, Cairo, Egypt, is gratefully acknowledged.
Authors Contribution Statement
T. A. Khattab designed and performed the experiments, analyzed the data, and wrote the
manuscript.
References
[1] N. Saracoglu, ’Recent advances and applications in 1, 2, 4, 5-tetrazine chemistry‘, Tetrahedron 2007, 63, 4199-4236.
[2] W.-X. Hu, G.-W. Rao, Y.-Q. Sun, ‘Synthesis and antitumor activity of s-tetrazine derivatives‘, Bioorganic Med. Chem.. lett. 2004, 14, 1177-1181.
[3] W. Kaim, ‘The coordination chemistry of 1, 2, 4, 5-tetrazines‘, Coordin. Chem. Rev. 2002, 230, 127-139.
[4] L. Infantes, M.F. Mahon, L. Male, P.R. Raithby, S.J. Teat, J. Sauer, N. Jagerovic, J. Elguero, S. Motherwell, ‘1, 2, 4, 5‐Tetrazines vs. Carboxylic Acid Dimers:
Molecular Chemistry vs. Supramolecular Chemistry‘, Helv. Chim. Acta 2003, 86, 1205-1221.
[5] J.H. Parsons, ‘1, 2, 4, 5-Tetrazines‘, U.S. Patent 4,237,127, issued December 2, 1980.
[6] L. Fritea, P. Audebert, L. Galmiche, K. Gorgy, A. Le Goff, R. Villalonga, R. Sandulescu, S. Cosnier, ‘First Occurrence of Tetrazines in Aqueous Solution:
Electrochemistry and Fluorescence‘, ChemPhysChem 2015, 16, 3695-3699.
[7] C. Quinton, V. Alain-Rizzo, C. Dumas-Verdes, G. Clavier, P. Audebert, ‘Original electroactive and fluorescent bichromophores based on non-conjugated
tetrazine and triphenylamine derivatives: towards more efficient fluorescent switches‘, RSC Adv. 2015, 5, 49728-49738.
[8] J. Zapala, M. Knor, T. Jaroch, A. Maranda-Niedbala, E. Kurach, K. Kotwica, R. Nowakowski, D. Djurado, J. Pecaut, M. Zagorska, A. Pron, ‘Self-Assembly
Properties of Semiconducting Donor–Acceptor–Donor Bithienyl Derivatives of Tetrazine and Thiadiazole: Effect of the Electron Accepting Central Ring‘,
Langmuir 2013, 29, 14503-14511.
[9] M.R. Karver, R. Weissleder, S.A. Hilderbrand, ‘Synthesis and evaluation of a series of 1, 2, 4, 5-tetrazines for bioorthogonal conjugation‘, Bioconjug. Chem.
[10] N.K. Devaraj, R. Weissleder, ‘Biomedical applications of tetrazine cycloadditions‘, Acc. Chem.. Res. 2011, 44, 816-827.
[11] C. She, S.J. Lee, J.E. McGarrah, J. Vura-Weis, M.R. Wasielewski, H. Chen, G.C. Schatz, M.A. Ratner, J.T. Hupp, ‘Photoinduced electron transfer from rail to
rung within a self-assembled oligomeric porphyrin ladder‘, Chem. Commun. 2010, 46, 547-549.
[12] A.M. Churakov, V.A. Tartakovsky, ‘Progress in 1, 2, 3, 4-Tetrazine Chemistry‘, Chem. Rev. 2004, 104, 2601-2616.
[13] K. Neumann, S. Jain, J. Geng, M. Bradley, ‘Nanoparticle “switch-on” by tetrazine triggering‘, Chem. Commun. 2016, 52, 11223-11226.
[14] A.R. Sayed, J.S. Wiggins, ‘1, 3-Dipolar cycloaddition polymerization reactions of novel macromolecules containing sym-tetrazine rings‘, Polymer 2008, 49,
[15] D.A. Roberts, B.S. Pilgrim, J.D. Cooper, T.K. Ronson, S. Zarra, J.R. Nitschke, ‘Post-assembly modification of tetrazine-edged FeII4L6 tetrahedra‘, J. Am.
Chem. Soc. 2015, 137, 10068-10071.
[16] A. de Meijere, B. Konig, ‘Diels‐Alder Reactions of [2.2] Paracyclophan‐1‐ene and [2.2] Paracyclophane‐1, 9‐diene with 3, 6‐Disubstituted 1, 2, 4,
5‐Tetrazines‘, Helv. Chim. Acta 1992, 75, 901-906.
[17] D.E. Chavez, M.A. Hiskey, ‘1, 2, 4, 5-tetrazine based energetic materials‘, J. Energ. Mater. 1999, 17, 357-377.
[18] D.E. Chavez, M.A. Hiskey, R.D. Gilardi, ‘3, 3′‐Azobis (6‐amino‐1, 2, 4, 5‐tetrazine): A Novel High‐Nitrogen Energetic Material‘, Angew. Chem. 2000, 112,
1861-1863.
[19] D. Wang, W. Chen, Y. Zheng, C. Dai, K. Wang, B. Ke, B. Wang, ‘3, 6-Substituted-1, 2, 4, 5-tetrazines: tuning reaction rates for staged labeling applications‘,
Org. Biomol. Chem. 2014, 12, 3950-3955.
This article is protected by copyright. All rights reserved.