PALLADIUM(II) EXTRACTION BY SULFUR-CONTAINING CALIX[4,6]ARENES
1815
The increasing order of R(D) (dichloroethane ≤ tolu-
5. S. J. Al Bazi and H. Freizer, Solvent Extr. Ion Exch. 5
2), 265 (1987).
Pd
(
ene < CCl ) corresponds to the decreasing order of R S
4
2
6
. Yu. I. Murinov, V. N. Maistrenko, and N. G. Afzaletdi-
nova, Solvent Extraction of Metals by S,N-Organic Com-
pounds (Nauka, Moscow, 1993) [in Russian].
solvating abilities [29]. The highest palladium extrac-
tion by 3b with ëël as diluent is due to the lowest KL
4
and, thus, the highest aqueous concentration of L
7
8
. D. Bauer and G. Cote, Proceedings of ISEC 88, Vol. 2,
according to equilibrium (5). The rapid acquisition (in
3
p. 79.
2
–5 min) of high D (up to 4 × 10 ; Table 2) and D
Pd
Au
. G. Cote, D. Bauer, and S. Daamach, Proceedings of
ISEC 88, Vol. 2, p. 83.
values [13, 16] from chloride solutions (1–3 M HCl)
with the use of a three- to fourfold excess of 3‡ in tolu-
ene provides a more than 99% overall extraction of
these metals. Thus, the use of calixarene thioethers
9
. A. T. Yordanov, O. M. Falana, H. F. Koch, and D. M. Rou-
dhill, Inorg. Chem. 36, 6468 (1997).
releases the main limitation inherent to monodentate 10. A. Yordanov, B. Whittlesey, and D. Roundhill, Inorg.
Chem. 37, 3526 (1998).
R S and opens a possibility for organizing palladium
2
extraction together with gold in a continuous mode, in 11. A. Yordanov and D. Roundhill, Inorg. Chim. Acta 270,
2
16 (1998).
particular, with the use of solid extractants. The non-
steady-state character of palladium extraction by 12. A. Yordanov, B. Whittlesey, and D. Roundhill,
calix[4]arene thioethers and the extremely low palla-
Supramol. Chem. 9, 13 (1998).
dium concentrations in raffinates kept us from calculat- 13. V. Torgov, G. Kostin, V. Mashukov, et al., Solvent. Extr.
ing extraction constants; they were determined using
conjugate equilibria [27].
Ion Exch. 23 (2), 171 (2005).
4. V. Torgov, G. Kostin, T. Korda, et al., Solvent Extr. Ion
Exch. 23 (6), 781 (2005).
1
To conclude, we list the main strengths of
calix[4,6]arene thioethers over monodentate R S:
15. N. Iki and S. Miyano, J. Inclusion Phenom. Macrocyclic
2
Chem. 44, 99 (2001).
(i) The possibility of chelation increases DPd by
1
1
1
1
2
2
6. R. Lamartine, C. Bavoux, F. Vocanson, et al., Tetrahe-
dron Lett. 42, 1021 (2001).
three to four orders of magnitude compared to palla-
dium extraction with R S from chloride and nitrate–
2
7. P. Lhotak, M. Himl, I. Stibor, et al., Tetrahedron Lett. 42,
nitrite solutions [4, 14] and shortens the time of com-
plete palladium recovery from 40–60 min to 2–5 min;
7
107 (2001).
8. N. Morohashi, N. Iki, M. Aono, and S. Miyano, Chem.
Lett., 494 (2002).
9. H. Kumagai, M. Hasegawa, S. Miyanari, et al., Tetrahe-
dron Lett. 38, 3971 (1997).
(ii) Additional enhancement of palladium extraction
is possible due to intermolecular catalysis by the proto-
nated oxygen atoms of alkoxy groups in the lower rim
of calix[4,6]-arene thioethers for HCl concentrations
higher than 2–3 mol/L;
0. P. Lhotak, M. Himl, S. Pakhomova, and I. Stibor, Tetra-
hedron Lett. 39, 8915 (1998).
(iii) The presence of bridging sulfur atoms in thia-
1. Synthesis of Platinum-Group Metal Complexes, Ed. by I.
I. Chernyaev (Nauka, Moscow, 1964), p. 173 [in Rus-
sian].
calix[4,6]arene thioethers differently affects their reac-
tivity to palladium and gold, creating prerequisites for
the extraction separation of these metals.
2
2
2
2. V. V. Tatarchuk, I. A. Druzhinina, T. M. Korda, and
V. G. Torgov, Zh. Neorg. Khim. 47 (12), 2082 (2002)
[Russ. J. Inorg. Chem. 47 (12), 1917 (2002)].
ACKNOWLEDGMENTS
3. V. V. Tatarchuk, G. A. Kostin, and V. G. Torgov, Zh.
Neorg. Khim. 45 (9), 1588 (2000) [Russ. J. Inorg. Chem.
45 (9), 1453 (2000)].
This work was in part supported by the National Sci-
ence Foundation of the Russian Federation and the
Integration project of the Siberian Branch of the Rus-
sian Academy of Sciences and the National Academy
of Sciences of Ukraine (project no. 4-12).
4. V. G. Torgov and V. V. Tatarchuk, Zh. Neorg. Khim. 41
(
8), 1402 (1996) [Russ. J. Inorg. Chem. 41 (8), 1342
(1996)].
2
2
5. S. Erenburg, N. Bausk, L. Masalov, et al., Inorg. React.
Mech. 2, 1 (2000).
6. G. A. Kostin, V. I. Mashukov, T. M. Korda, et al., Zh.
Neorg. Khim. 51 (10), 1786 (2006) [Russ. J. Inorg.
Chem. 51 (10), 1682 (2006)].
REFERENCES
1
. M. A. Meretukov and A. M. Orlov, The Metallurgy of
Precious Metals (World’s Experience) (Metallurgiya,
Moscow, 1991) [in Russian].
2
7. G. A. Kostin, V. I. Mashukov, T. M. Korda, et al., Zh.
Neorg. Khim. 52 (11) (2007) [Russ. J. Inorg. Chem. 52
2
3
. V. G. Torgov, Isotopenpraxis 20, 352 (1984).
(11), 1697 (2007)].
. V. G. Torgov, T. M. Korda, and L. A. Terent’eva, The
Precious Metals: Chemistry and Analyses. Collected 28. E. M. Arnett, E. J. Mitchell, and T. S. Murty, J. Am.
Works, Ed. byV. G. Torgov and F.A. Kuznetsov (Novosi-
birsk, 1989) [in Russian].
Chem. Soc. 96 (12), 3875 (1974).
2
9. V. A. Mikhailov, S. S. Shatskaya, D. D. Bogdanova, and
V. G. Torgov, Izv. Sib. Otd. Russ. Akad. Nuak, Ser.
Khim., No 3, 34 (1976).
4
. V. G. Torgov, V. V. Tatarchuk, I. A. Druzhinina, et al., At.
Energ. 88 (5), 358 (2000).
RUSSIAN JOURNAL OF INORGANIC CHEMISTRY Vol. 53 No. 11 2008