Journal of the American Chemical Society
Page 4 of 5
vates the electrophile,22 model A could be invoked which would
correctly explain the observed stereochemistry.
5 Chidipudi, S. R.; Burns, D. J.; Khan, I.; Lam, H. W. Angew. Chem. Int.
Ed. 2015, 54, 13975ꢀ13979.
6 For more details, see: (a) Ref 1. (b) Savechenkov, P. Y.; Zhang, X.;
Chiara, D. C.; Stewart, D. S.; Ge, R.; Zhou, X.; Raines, D. E.; Cohen, J.
B.; Forman, S. A.; Miller, K. W.; Bruzik, K. S. J. Med. Chem. 2012,
55, 6554ꢀ6565.
1
2
3
4
5
6
7
8
In summary, we report here the first highly enantioselective
construction of chiral barbiturates with an inꢀring quaternary
stereogenic center, based on the catalytic αꢀfunctionalization of 2ꢀ
alkylthio 4,6ꢀdioxopyrimidines as key barbituric acid equivalents.
Squaramideꢀtertiary amine bifunctional catalysts are able to trigꢀ
ger the reaction of these templates with Michael acceptors effiꢀ
ciently, being the highest selectivities attained with the new bulky
catalyst C8. While extension of this approach (i.e. using different
acceptors) can be foreseen, chemical elaboration of adducts proꢀ
vides a route to structurally diverse, quaternary barbituric acid
derivatives hitherto inaccessible in optically active form.
7 (a) Towin, S. L.; Jenking, A.; Lieb, W. R.; Franks, N. P. Anesthesiolo-
gy 1999, 90, 1714ꢀ1722. (b) Ref. 6b.
8 Selected reviews: (a) Tian, S.ꢀK.; Chen, Y.; Hang, J.; Tang, L.;
McDaid, P.; Deng, L. Acc. Chem. Res. 2004, 37, 621ꢀ631. (b) Palomo,
C.; Oiarbide, M.; López, R. Chem. Soc. Rev. 2009, 38, 632ꢀ653. (c)
Ting, A.; Goss, J. M.; McDougal, N. T.; Schaus, S. E. Top. Curr.
Chem. 2010, 291, 145ꢀ20. (d) Singh, R. P.; Deng, L. Cinchona Alkaloid
Organocatalysts. In Asymmetric Organocatalysis 2: Brønsted Base and
Acid Catalysts, and Additional Topics; Maruoka, K., Ed.; Thieme:
Stuttgart, 2012, pp 41ꢀ118. (e) Jang, H. B.; Oh, J. S.; Song, C. E. Biꢀ
functional Cinchona Alkaloid Organocatalysts. In ref 8d, pp 119ꢀ168.
9 Schade, A.; Tchernook, I.; Bauer, M.; Oehlke, A.; Breugst, M.; Frieꢀ
drich, J.; Spange, S. J. Org. Chem. 2017, 82, 8476ꢀ8488.
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
ASSOCIATED CONTENT
10 This reason could also explain the difficulty associated with enantioseꢀ
lective allylations and spiroannulations, see: ref 3ꢀ5.
The Supporting information is available free of charge via the
(CIF).
11 Reviews on quaternary carbon stereocenters: (a) Hong, A. Y.; Stoltz, B.
M. Eur. J. Org. Chem. 2013, 2745ꢀ2759. (b) Das, J. P.; Marek, I.
Chem. Commun. 2011, 47, 4593ꢀ4623. (c) Bella, M.; Caspery, T. Syn-
thesis 2009, 1583ꢀ1614. (d) Cozzi, P. G.; Hilgraf, R.; Zimmerman, N.
Eur. J. Org. Chem. 2007, 5969ꢀ1614. (e) Trost, B. M.; Jiang, C. Syn-
thesis 2006, 369ꢀ396. (f) Quaternary Stereocenters, Christoffers, J.;
Baro, A., Eds.; WileyꢀVCH: Weinheim, 2005.
12 See the Supporting Information for details.
13 Rakhimov, A. I.; Avdeev, S. A.; Chang, L. T. D. Russ. J. Gen. Chem.
2009, 79, 338ꢀ339.
14 (a) McCooey, S. H.; Connon, S. J. Angew. Chem. Int. Ed. 2005, 44,
6367ꢀ6370. (b) Vakulya, B.; Varga, S.; Csámpai, A.; Soós, T. Org.
Lett. 2005, 7, 1967ꢀ1969. For pioneering work: (c) Okino, T.; Hoashi,
Y.; Takemoto, Y. J. Am. Chem. Soc. 2003, 125, 12672ꢀ12673.
15 (a) Jiang, H.; Paixão, M. W.; Monge, D.; Jørgensen, K. A. J. Am.
Chem. Soc. 2010, 132, 2775ꢀ2783. For pioneering work on squaraꢀ
mides: (b) Malerich, J. P.; Hagihara, K.; Rawal, V. R. J. Am. Chem.
Soc. 2008, 130, 14416ꢀ14417.
16 (a) Dai, L.; Wang, S.ꢀX.; Chen, F.ꢀE. Adv. Synth. Catal. 2010, 352,
2137ꢀ2141. (b) Yang, W.; Du, D.ꢀM. Org. Lett. 2010, 12, 5450ꢀ5453.
17 Urruzuno, I.; Mugica, O.; Oiarbide, M.; Palomo, C. Angew. Chem. Int.
Ed. 2017, 56, 2059ꢀ2063.
18 Selected reviews on asymmetric organocatalytic conjugate additions:
(a) Vicario, J. L.; Badía, D.; Carrillo, L.; Reyes, E. Organocatalytic Enꢀ
antioselecive Conjugate Addition Reactions: A Powerful Tool for the
Stereocontrolled Synthesis of Complex Molecules; RSC Publishing:
Cambridge, 2010. (b) Tsogoeva, S. B. Eur. J. Org. Chem. 2007, 1701ꢀ
1716. (c) Almasi, D.; Alonso, D. A.; Nájera, C. Tetrahedron: Asym-
metry 2007, 18, 299ꢀ365
19 Badiola, E.; Fisher, B.; GómezꢀBengoa, E.; Mielgo, A.; Olaizola, I.;
Urruzuno, I.; García, J. M.; Odriozola, J. M.; Razkin, J.; Oiarbide, M.;
Palomo, C. J. Am. Chem. Soc. 2014, 136, 17869ꢀ17881.
Experimental details, NMR spectra, HPLC chromatograms (PDF).
AUTHOR INFORMATION
Corresponding Author
*claudio.palomo@ehu.es; mikel.oiarbide@ehu.eus.
Notes
The authors declare no competing financial interest
.
ACKNOWLEDGMENT
Finantial support was provided by the University of the Basque
Country UPV/EHU (UFI QOSYC 11/22), Basque Government
(Grant No ITꢀ628ꢀ13), and Ministerio de Economía y Competiꢀ
tividad (MEC, Grant CTQ2016ꢀ78487ꢀC2), Spain, S.P. thanks
UPV/EHU for fellowship. We also thank SGiker (UPV/EHU) for
providing NMR, HRMS, and XꢀRay resources.
REFERENCES
1 Reviews: (a) Bojarski, J. T.; Mokrosz, J. L.; Bartoń, H. J.; Paluchowꢀ
ska, M. H. Adv. Heterocycl. Chem. 1985, 38, 229ꢀ297. (b) Dhiman, P.
J. Drug Discov. Ther. 2013, 1, 15ꢀ22. (c) Vijava Laxmi, S.; Janardhan,
B.; Rajitha, B. Int. J. Curr. Res. Rev. 2012, 4, 89ꢀ100.
2 Selected recent examples of chiral barbituric acids with chirality outꢀ
side of the ring: (a) Han, B.; Huang, W.; Ren, W.; He, G.; Wang, J.ꢀh.;
Peng, C. Adv. Synth. Catal. 2015, 357, 561ꢀ568. (b) Liu, Y.; Yang, W.;
Wu, Y.; Mao, B.; Gao, X.; Liu, H.; Sun, Z.; Xiao, Y.; Guoa, H. Adv.
Synth. Catal. 2016, 358, 2867ꢀ2872. (c) Zhao, H.ꢀW.; Tian, T.; Pang,
H.ꢀL.; Li, B.; Chen, X.ꢀQ.; Yang, Z.; Meng, W.; Song, X.ꢀQ.; Zhao, Y.ꢀ
D.; Liua, Y.ꢀY. Adv. Synth. Catal. 2016, 358, 2619ꢀ2630. (d) Rombola,
M.; Sumaria, C. S.; Montgomery, T. D.; Rawal, V. H. J. Am. Chem.
Soc. 2017, 139, 5297−5300.
20 CCDCꢀ1565472 (compound 17) and CCDCꢀ 1565462 (compound
24Ad) contain the supplementary crystallographic data for this paper.
These data can be obtained from the Cambridge Crystallographic Data
21 Nucleophilic substitutions using MBH bromides or carbonates, see:
Pellissier, H. Tetrahedron 2017, 73, 2831ꢀ2861.
22 (a) Kótai, B.; Kardos, G.; Hamza, A.; Farkas, V.; Pápai, I.; Soós, T.
Chem. Eur. J. 2014, 20, 5631ꢀ5639. (b) Trujillo, C.; Rozas, I.; Botte,
A.; Connon, S. J. Chem. Commun. 2017, 53, 8874ꢀ8877.
3 (a) Brunner, H.; Deml, I.; Dirnberger, W.; Nuber, B.; Reisser, W. Eur.
J. Inorg. Chem. 1998, 43ꢀ54. (b) Brunner, H.; Ruckert, T. Monatsh.
Chem. 1998, 129, 339ꢀ354. (c) Brunner, H.; Furst, J. Inorg. Chim. Acta
1994, 220, 63ꢀ66.
4 Trost, B. M.; Schroeder, G. M. J. Org. Chem. 2000, 65, 1569ꢀ1573.
ACS Paragon Plus Environment