The Journal of Organic Chemistry
Note
account the volume of the “cold” zones of the reactor (pumps, tubing,
etc.) and the flow rate. After steady state was achieved (ca. 45 min), 10
mL of the crude reaction mixture was collected at the reaction outlet,
and the solvent was gently evaporated under reduced pressure. The
residue was dissolved in ethyl acetate (30 mL) and extracted with a
saturated aqueous solution of NaHCO3 (2 × 10 mL). The organic
phase was then dried over magnesium sulfate and evaporated under
vacuum, yielding the pure nitrile.
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
D.C. thanks the Ministerio de Ciencia e Innovacion
a scholarship.
́
of Spain for
1
Benzonitrile (Table 1, Entry 1). (459 mg, 89%); H NMR (300
MHz, CDCl3) δ 7.69−7.60 (m, 3H), 7.49 (t, J = 12.0 Hz, 2H); 13C
NMR (75 MHz, CDCl3) δ 132.8, 132.2, 129.1, 118.9, 112.4; MS-EI
m/z 103 (100%), 76 (45%).
REFERENCES
■
(1) (a) Collier, S. J.; Langer, P. Application of Nitriles as Reagents for
Organic Synthesis with Loss of the Nitrile Functionality. In Science of
Synthesis; Georg Thieme: Stuttgart, Germany, 2004; Vol. 19, pp 403−
425. (b) North, M. In Comprehensive Organic Functional Group
Transformations; Katritzky, A. R., Meth-Cohn, O., Rees, C. W., Eds.;
Pergamon Press: Oxford, U.K., 1995.
1
2-Chlorobenzonitrile (Table 1, Entry 2). (667 mg, 97%); H
NMR (300 MHz, CDCl3) δ 7.69 (d, J = 12.0 Hz, 2H), 7.56 (dd, J =
12.0 Hz, J = 8.0 Hz, 2H), 7.40 (t, J = 8.0 Hz, 1H); 13C NMR (75 MHz,
CDCl3) δ 136.9, 134.0, 133.9, 130.1, 127.1, 116.0, 113.4; MS-EI m/z
139 (30%), 137 (100%), 102 (40%), 75 (30%).
3-Nitrobenzonitrile (Table 1, Entry 3). (668 mg, 90%); 1H
NMR (300 MHz, CDCl3) δ 8.56 (s, 1H), 8.50 (d, J = 12.0 Hz, 1H),
8.02 (d, J = 12.0 Hz, 1H), 7.76 (t, J = 8.0 Hz, 1H); 13C NMR (75
MHz, CDCl3) δ 148.2, 137.6, 130.7, 127.5, 127.2, 116.5, 114.1; MS-EI
m/z 148 (35%), 102 (100%), 90 (15%), 75 (40%).
́ ́ ́
(2) (a) Roh, J.; Vavrova, K.; Hrabalek, A. Eur. J. Org. Chem. 2012,
6101−6118. (b) Myznikov, L. V.; Hrabalek, A.; Koldobskii, G. I. Chem.
Heterocycl. Compd. 2007, 43, 1−9. (c) Koldobskii, G. I. Russ. J. Org.
Chem. 2006, 42, 487−504.
(3) Wang, Z. Comprehensive Organic Name Reactions and Reagents;
Wiley: London, 2009; pp 1661−1663.
1
3-Hydroxybenzonitrile (Table 1, Entry 4). (465 mg, 78%); H
(4) (a) Movassagh, B.; Shokri, S. Tetrahedron Lett. 2005, 46, 6923−
6925. (b) Arote, N. D.; Bhalerao, D. S.; Akamanchi, K. G. Tetrahedron
Lett. 2007, 48, 3651−3653.
NMR (300 MHz, CDCl3) δ 7.36 (t, J = 12.0 Hz, 1H), 7.26 (t, J = 8.0
Hz, 1H), 7.17−7.11 (m, 2H); 13C NMR (75 MHz, CDCl3) δ 156.2,
130.6, 124.5, 120.8, 118.7, 118.6, 112.8; MS-EI m/z 119 (100%), 91
(40%), 64 (30%).
(5) (a) Zhou, S.; Addis, D.; Das, S.; Junge, K.; Beller, M. Chem.
Commun. 2009, 4883−4885. (b) Kuo, C. W.; Zhu, J.-L.; Wu, J. D.;
Chu, C. M.; Yao, C. F.; Shia, K. S. Chem. Commun. 2007, 301−303.
(6) (a) Ragagopal, G.; Kim, S. S. Tetrahedron 2009, 65, 4351−4355.
(b) Mori, N.; Togo, H. Synlett 2005, 1456−1458. (c) Iida, S.; Togo, T.
Tetrahedron 2007, 63, 8274−8281.
1
2-Methylbenzonitrile (Table 1, Entry 5). (527 mg, 90%); H
NMR (300 MHz, CDCl3) δ 7.60 (d, J = 12.0 Hz, 1H), 7.49 (t, J = 12.0
Hz, 1H), 7.34−7.26 (m, 2H), 2.56 (s, 3H); 13C NMR (75 MHz,
CDCl3) δ 141.9, 132.6, 132.5, 130.2, 126.2, 118.2, 112.7, 20.5; MS-EI
m/z 117 (100%), 116 (60%), 90 (70%), 89 (45%), 63 (30%).
1
2-Methoxybenzonitrile (Table 1, Entry 6). (612 mg, 92%); H
(7) Cao, Y.-Q.; Zhang, Z.; Guo, Y.-X. J. Chem. Technol. Biotechnol.
2008, 83, 1441−1444.
(8) (a) Imamoto, T.; Takaoka, T.; Yokoyama, M. Synthesis 1983,
142−143. (b) Telvekar, V. N.; Rane, R. A. Tetrahedron Lett. 2007, 48,
6051−6053.
NMR (300 MHz, CDCl3) δ 7.55 (t, J = 12.0 Hz, 1H), 7.04−6.97 (m,
2H), 3.94 (s, 3H); 13C NMR (75 MHz, CDCl3) δ 161.2, 134.4, 133.8,
120.8, 116.5, 111.3, 101.8, 56.0; MS-EI m/z 133 (80%), 104 (100%),
90 (65%), 76 (25%), 63 (45%).
1
3-Furonitrile (Table 1, Entry 7). (400 mg, 86%); H NMR (300
(9) (a) Hulkenberg, A.; Troost, J. J. Tetrahedron Lett. 1982, 23,
1505−1508. (b) Huber, V. J.; Bartsch, R. A. Tetrahedron 1998, 54,
9281−9288.
MHz, CDCl3) δ 7.97 (s, 1H), 7.52 (d, J = 4.0 Hz, 1H), 6.65 (d, J = 4.0
Hz, 1H); 13C NMR (75 MHz, CDCl3) δ 149.7, 144.1, 113.1, 111.1,
97.9; MS-EI m/z 93 (100%), 65 (45%), 64 (40%).
(10) (a) Kangani, C. O.; Day, B. W.; Kelley, D. E. Tetrahedron Lett.
2008, 49, 914−918. (b) Kangani, C. O.; Day, B. W.; Kelley, D. E.
Tetrahedron Lett. 2007, 48, 5933−5937.
2-Thiophenecarbonitrile (Table 1, Entry 8). (447 mg, 82%); 1H
NMR (300 MHz, CDCl3) δ 7.44 (dd, J = 8.0 Hz, J = 4.0 Hz, 2H), 7.15
(t, J = 8.0 Hz, 1H); 13C NMR (75 MHz, CDCl3) δ 137.5, 132.6, 127.7,
114.3, 109.9; MS-EI m/z 109 (100%), 82 (10%), 70 (12%), 58 (40%).
Cyclohexanecarbonitrile (Table 1, Entry 9). (392 mg, 72%); 1H
NMR (300 MHz, CDCl3) δ 2.67−2.59 (m, 1H), 1.91−1.65 (m, 6H),
1.53−1.42 (m, 4H); 13C NMR (75 MHz, CDCl3) δ 122.6, 29.5, 28.0,
25.2, 24.0; MS-EI m/z 108 (20%), 94 (30%), 81 (25%), 67 (35%), 56
(100%).
(11) Klein, D. A. J. Org. Chem. 1971, 36, 3050−3051.
(12) Loder, D. J. U.S. Patent 2,377,795, 1945; Chem. Abstr. 1945, 39,
25527.
(13) Mlinaric-
2089−2091.
́ ́
Majerski, K.; Margeta, R.; Veljkovic, J. Synlett 2005,
(14) Becke, F.; Burger, T. F. Liebigs Ann. Chem. 1968, 716, 78−82.
(15) For recent selected reviews of continuous-flow/microreactor
chemistry, see: (a) Hessel, V.; Kralisch, D.; Kockmann, N.; Noel, T.;
Wang, Q. ChemSusChem 2013, 6, 746−789. (b) Baxendale, I. R. J.
Chem. Technol. Biotechnol. 2013, 88, 519−552. (c) Newman, S. G.;
Jensen, K. F. Green Chem. 2013, 15, 1456−1472. (d) Wiles, C.; Watts,
1
Hexanenitrile (Table 1, Entry 10). (378 mg, 78%); H NMR
(300 MHz, CDCl3) δ 2.34 (t, J = 12.0 Hz, 2H), 1.72−1.62 (m, 2H),
1.49−1.32 (m, 4H), 0.93 (t, J = 12.0 Hz, 3H); 13C NMR (75 MHz,
CDCl3) δ 119.9, 30.7, 25.1, 21.9, 17.1, 13.7; MS-EI m/z 96 (15%), 82
(30%), 68 (40%), 54 (100%).
1
P. Green Chem. 2012, 14, 38−54. (e) Noel, T.; Buchwald, S. L. Chem.
̈
4-Oxopentanenitrile (Table 1, Entry 11). (413 mg, 85%); H
Soc. Rev. 2011, 40, 5010−5029. (f) Baumann, M.; Baxendale, I. R.; Ley,
S. V. Mol. Diversity 2011, 15, 613−630. (g) Yoshida, J.-i.; Kim, H.;
Nagaki, A. ChemSusChem 2011, 4, 331−340.
NMR (300 MHz, CDCl3) δ 2.83 (t, J = 12.0 Hz, 2H), 2.57 (t, J = 12.0
Hz, 2H), 2.21 (s, 3H); 13C NMR (75 MHz, CDCl3) δ 203.8, 119.0,
38.6, 29.5, 11.4; MS-EI m/z 97 (25%), 54 (100%).
(16) Razzaq, T.; Glasnov, T. N.; Kappe, C. O. Chem. Eng. Technol.
2009, 32, 1702−1716.
ASSOCIATED CONTENT
■
(17) (a) Yoon, C. S.; Park, H. D.; Kim, S. Y.; Kim, S. H. Macromol.
Symp. 2007, 249−250, 515−520. (b) Choia, H.; Veriansyaha, B.;
Kima, J.; Kima, J.-D.; Kang, J. W. J. Supercrit. Fluids 2010, 52, 285−
291. (c) Tilstam, U.; Defrance, T.; Giard, T. Org. Process Res. Dev.
2009, 13, 312−323. (d) Nursanto, E. B.; Nugroho, A.; Hong, S.-A.;
Kim, S. J.; Chung, K. Y.; Kim, J. Green Chem. 2011, 13, 2714−2718.
(18) (a) Hayden, S.; Damm, M.; Kappe, C. O. Macromol. Chem. Phys.
2013, 214, 423−434. (b) Obermayer, D.; Gutmann, B.; Kappe, C. O.
Angew. Chem., Int. Ed. 2009, 48, 8321−8342.
S
* Supporting Information
Supporting figures and copies of 1H NMR spectra of all
prepared compounds. This material is available free of charge
AUTHOR INFORMATION
Corresponding Author
■
10570
dx.doi.org/10.1021/jo401945r | J. Org. Chem. 2013, 78, 10567−10571