3
Struck, E. Chem. Ber. 1919, 52, 1749; (d) von Braun, J.; Manz,
G. Liebigs Ann. Chem. 1931, 488, 111; (e) Connor, J. A.;
Leeming, S. W.; Price, R. J. Chem Soc., Perkin Trans. 1990,
1127; (f) Ellis, G. P.; Romney-Alexander, T. M. Chem. Rev. 1987,
87, 779.
Table 2 (continued)
5.
6.
(a) Schareina, T.; Beller, M. Copper-catalysed cyanations of aryl
halides and related compounds, ed. Evano, G.; Blanchard, N.
Wiley, 2014, pp 313-334; (b) Wen, Q. D.; Jin, J. S.; Zhang, L. P.;
Luo, Y.; Lu, P.; Wang, Y. G. Tetrahedron Lett. 2014, 55, 1271;
(c) Kim, J. H.; Kim, H. J.; Chang, S, Angew. Chem. Int. Ed. 2012,
51, 11948; (d) Anbarasan, P.; Schareina, T.; Beller, M. Chem. Soc.
Rev. 2011, 40, 5049.
(a) Wang, T.; Jiao, N. Acc. Chem. Res. 2014, 47, 1137; (b) Ding,
S. T.; Jiao, N. J. Am. Chem. Soc. 2011, 133, 12374; (c) Kim, J.;
Chang, S. J. Am. Chem. Soc. 2010, 132, 10272; (d) Gong, T. J.;
Xiao, B.; Cheng, W. M.; Su, W.; Liu, Z. J.; Fu, Y. J. Am. Chem.
Soc. 2013, 135, 10630; (e) Yu, D. G.; Gensch, T.; Azambuja, F.
D.; Vasquez-Cespedes, S.; Glorius, F. J. Am. Chem. Soc. 2014,
136,17722; (f) Yang, Y.; Buchwald, S. L. Angew. Chem. Int. Ed.
2014, 53, 8677; (g) Shu, Z. B.; Ji, W. Z.; Wang, X.; Zhou, Y. J.;
Zhang, Y.; Wang, J. B. Angew. Chem. Int. Ed. 2014, 53, 2186.
Martin, A.; Kalevaru, N. V.; Lucke, B.; Sans, J. Green Chem.
2002, 4, 481.
(a) Yang, S. H.; Chang, S. Org. Lett. 2001, 3, 4209; (b) Lai, G.;
Bhamare, N. K.; Anderson, W. K. Synlett. 2001, 230; (c) Sharghi,
H.; Saravari, M. H. Tetrahedron. 2002, 58, 10323; (d) Bandgar, B.
P.; Makone, S. S. Synlett. 2003, 262; (e) Ballini, R.; Fiorini, D.;
Palmieri, A. Synlett, 2003, 1841; (f) Movassagh, B.; Shokri, S.
Tetrahedron Lett. 2005, 46, 6923; (g) Zhu, J. L.; Lee, F. Y.; Wu, J.
D.; Kuo, C. W.; Shia, K. S. Synlett. 2007, 1317; (h) Khezri, S. H.;
Azimi, N.; Mohammed-Vali, M.; Eftekhari-Sis, B.; Hashemi, M.
M.; Baniasadi, M. H.; Teimouric, F. Arkivoc. 2007, 162; (i)Yam-
aguchi, K.; Fujiwara, H.; Ogasawara, Y.; Kotani, M.; Mizuno, N.
Angew. Chem. Int. Ed. 2007, 46, 3922; (j) Telvekar, V. N.; Patel,
K. N.; Kundaikar, H. S.; Chaudhari, H. K. Tetrahedron Lett.
2008. 49, 2213; (k) Reddy, K. R.; Maheswari, C. U.; Venkatesh-
war, M.; Prashanati, S.; Kantam, M. L. Tetrahedron Lett. 2009.
50, 2050; (l) Singh, M. K.; Lakshman, M. K. J. Org. Chem. 2009,
74, 3079; (m) Zhu, C. J.; Ji, L.; Wei, Y. Y. Synthesis. 2010, 3121;
(n) Augustine, J. K.; Bombraun, A.; Atta, R. N. Synlett. 2011,
2223.
14
9.5
8.0
83%
83%
1n
2n
2o
15
1o
16
7.0
7.0
86%
86%
1p
2p
2q
7.
8.
17
1q
aReactions are performed using aryl aldehydes 1a-1q (1.0 mmol),
hydroxylamine hydrochloride (1.0 mmol) in glycerol (5 mL).
b Yields are given for isolated product.
The role of glycerol in this one pot protocol was established
by the fact that in the absence of glycerol the formation of nitrile
does not take place. Obviously, glycerol is an essential
component of reaction. In addition, we performed the reaction
using other alcoholic solvents such as ethanol, methanol, no
product was obtained. The role of glycerol in this reaction is
obscure at this stage. We suggest that hydrogen of hydroxyl
group of glycerol through the formation of hydrogen bonding
activated the aldehyde carbonyl to form the aldoxime associated
with HCl in glycerol. After that the glycerol and HCl in glycerol
help for dehydration of aldoxime formed to afford the desired
nitrile at 90OC. It is very well known that it has three hydroxyl
groups which may provide hydrogen bonding to the Cl- counter
anion and helps acid in dehydration of aldoxime.
9.
(a) Lenardao, E. J.; Trencha, D. O.; Ferreira, P. C.; Jacob, R. G.;
Perin, G. J. Braz.Chem. Soc. 2009, 20, 93; (b) Lenardao, E. J.;
Silva, M. S.; Sachini, M.; Lara, R. G.; Jacob, R. G.; Perin, G.
Arkivoc. 2009, 11, 221; (c) Perin, G. L. G.; Mello, C. S.; Radatz,
L.; Savegnago, D.; Alves, R. G.; Jacob, E. J. Tetrahedron Lett.
2010, 51, 4354.
In conclusion, we have developed here a green and catalyst-
free protocol for the synthesis of nitriles from aldehydes by using
glycerol as green solvent. Excellent yield, catalyst-free, cost
efficient, environmentally benign, and simple work-up
procedures are the advantages of this protocol.
10. Radatz, C. S.; Silva, R. B.; Perin, G.; Lenardao, E. J.; Jacob, R.
G.; Alves, D. Tetrahedron Lett. 2011, 52, 4132; (b) Perin, G.;
Mello, L. G.; Radatz, C. S.; Savegnago, L.; Alves, D.; Jacob, R.
G.; Lenardao, E. J. Tetrahedron Lett. 2010, 51, 4354; (c) Gonca-
lves, L. C.; Fiss, G. F.; Perin, G.; Alves, Diego.; Jacob, R. G.;
Lenardao, E. J. Tetrahedron Lett. 2010, 51, 6772. (d) Nascime-
ment, J. E. R.; Barcellos, A. M.; Sachini, M.; Perin, G.; Lenardao,
E. J.; Alves, D.; Jacob, R. G.; Missau, F. Tetrahedron Lett. 2011,
52, 2571; (e) Bachhav, H. M.; Bhagat, S. B.; Telvekar, V. N.
Tetrahedron Lett. 2011, 52, 5697; (f) Wolfson, A.; Litvak, G.;
Dlugy, C.; Shotland, Y.; Tavor, D. Ind. Crop Prod. 2009, 30, 78.
11. (a) Nelson, W. M. In green Solvents for Chemistry: Perspectives
and practice; Oxford University Press: Oxford, 2003; (b)
Pagliarao, M; Rossi, M. In future of Glycerol: New Usages for a
Versatile Raw Material; Clark, J. H., Kraus, G. A., Eds.; RSC
Green Chemistry Series: Cambridge, 2008.
12. General procedure for synthesis of nitriles: To a round bottom
flask aldehydes (1a-1q) (1.0 mmol) and hydroxylamine
hydrochloride (1.0 mmol) was added in glycerol (5 ml). The
reaction mixture was allowed to stir at 900C for the time indicated
in table 2. After the completion of reaction, the reaction mixture
was washed with a mixture of hexane/Ethyl acetate (95:5) (3 x 3
mL) and the organic phase were separated from glycerol, dried
with MgSO4, and evaporated under reduced pressure. The residue
was purified by column chromatography on silica gel using
hexane/ethyl acetate as eluent. All the compounds were
characterized by comparison with mp and 1H NMR, 13C NMR
spectra with literature. Selected spectral data for: Benzonitrile
(2a): Colorless Oil; b.p 191-192oC; FT-IR (υ, cm-1): 3097, 3050,
Acknowledgments
We thank the UGC, New Delhi and BCUD, SPPU, Pune for
financial support.
References and notes
1.
(a) Murdoch, D.; Keam, S. J. Drugs, 2005, 65, 2379; (b) Larock,
R.C. Comprehensive Organic Transformations: VCH: New York:
1989; pp 819-995; (c) Grundnann C. Houben-Wiley: Methodender
Organischen Chemie. Falbe; J. Ed. Georg Thieme Verlag:
Stuttgart; 1985, E5; PP 1313-1527.
(a) Fatiadi, A. J. In preparation and synthetic application of cyano
compounds; Patai, S., Rappoport, Z., Wiley-VCH; New York, NY,
1983; (b) Rappoport, Z., In Chemistry of the cyano group; John
Wiley & Sons; London, UK, 1970; PP 121-312.
(a) Jones, L. H.; Summerhill, N. W.; Swain, N. A.; Mills, J. E.
Med Chem. Commun. 2010, 1, 309; (b) Janakirman, M. N.;
Watenpaugh, K. D.; Chong, K. T.; Turner, S. R.; Tommasi, R. A.;
Thaisrivongs, S.; Strohbach, J. W. Bioorg. Med. Chem. Lett. 1998,
8, 1237; (c) Dube, D.; Blouin, M.; Brideau, C.; Chan, C. C.;
Desmarais, S.; Ethier, D.; Falgueyret, J. P.; Friesen, R. W.; Girard,
M.; Girard, Y.; Guay, J.; Riendeau, D.; Tagari, P.; Young, R. N.
Bioorg. Med. Chem. Lett. 1998, 8, 1255.
2.
3.
1
2231, 1502, 1401, 1276, 1198, 844; H NMR (400 MHz, CDCl3,
TMS, ppm): δ 7.65 (s, 3H), 7.45 (s, 2H); 13C NMR (100 MHz,
4.
(a) Sandmeyer, T.; Ber. Dtsch. Chem. Ges. 1884, 17, 1633; (b)
Galli, C. Chem. Rev. 1988, 88, 765; (c) Rosenmund, K. W.;