10.1002/anie.201912746
Angewandte Chemie International Edition
to generate the corresponding products. In a similar fashion, the
reaction was further extended to tertiary radicals to construct
quaternary carbon center (5e-5g). The scope of the phosphine oxides
was next evaluated and worked well to furnish the corresponding
products 5h and 5i.
unprecedented remote pyridyl ortho-migration to afford synthetically
valuable C2-fluoroalkyl functionalized pyridines. This strategy
features a photoredox radical process involving a sequential
formation of a CF3 radical, the addition of the CF3 radical to the
alkene, and an intramolecular endo addition to the ortho-position of
the pyridinium salt. Notably, this method could be successfully
extended to tertiary radicals to forge quaternary C-centers bearing
ortho-substituted pyridyl groups with excellent C2-selectivity.
Moreover, the method could be successfully applied to the reaction
with P-centered radicals in these systems.
Table 4. Scope of remote ortho-migration using P-centered radicals[a,b]
Received: ((will be filled in by the editorial staff))
Published online on ((will be filled in by the editorial staff))
Acknowledgements
This research was supported financially by Institute for Basic Science
(IBS-R010-A2). We thank Dr. Dongwook Kim (IBS) for XRD analysis.
Conflict of interest
The authors declare no conflict of interest.
Keywords: remote ortho-migration • trifluoromethylation • pyridylation
• photocatalysis • N-alkoxypyridinium salt
[1] a) M. Baumann, I. R. Baxendale, Beilstein. J. Org. Chem. 2013, 9, 2265;
b) R. D. Taylor, M. MacCoss, A. D. G. Lawson, J. Med. Chem. 2014,
57, 5845.
[a] Reactions were performed with 1 (0.1 mmol), 2 (0.2 mmol), and EY (2.5 mol%)
in MeCN (1.0 mL), irradiating with a blue LED (440 nm, 8.5 W) under N2 at rt for
12 h. [b] Isolated yields.
[2] For selected recent examples, see: a) L. J. Allen, P. J. Cabrera, M. Lee, M.
S. Sanford, J. Am. Chem. Soc. 2014, 136, 5607; b) J. Jin, D. W. C.
MacMillan, Angew. Chem. Int. Ed. 2015, 54, 1565; c) J. Zoller, D. C.
Fabry, M. Rueping, ACS Catal. 2015, 5, 3900; d) R. A. Garza-Sanchez,
A. Tlahuext-Aca, G. Tavakoli, F. Glorius, ACS Catal. 2017, 7, 4057.
[3] For selected recent examples, see: a) G.-X. Li, C. A. Morales-Rivera, Y.
Wang, F. Gao, G. He, P. Liu, G. Chen, Chem. Sci. 2016, 7, 6407; b) P.
Liu, W. Liu, C.-J. Li, J. Am. Chem. Soc. 2017, 139, 14315; c) X. Wu,
H. Zhang, N. Tang, Z. Wu, D. Wang, M. Ji, Y. Xu, M. Wang, C. Zhu,
Nat. Commun. 2018, 9, 3343; d) A. C. Sun, E. J. McClain, J. W. Beatty,
C. R. J. Stephenson, Org. Lett. 2018, 20, 3487; e) J. Q. Buquoi, J. M.
Lear, X. Gu, D. A. Nagib, ACS Catal. 2019, 9, 5330;.f) J. Dong, X. Lyu,
Z. Wang, X. Wang, H. Song, Y. Liu, Q. Wang, Chem. Sci. 2019, 10,
976; g) Y. Kumagai, N. Murakami, F. Kamiyama, R. Tanaka, T.
Yoshino, M. Kojima, S. Matsunaga, Org. Lett. 2019, 21, 3600; h) J. M.
Lear, J. Q. Buquoi, X. Gu, K. Pan, D. N. Mustafa, D. A. Nagib, Chem.
Commun. 2019, 55, 8820.
The photoexcited state EY under blue LED irradiation undergoes a
single-electron oxidation with the Langlois reagent to yield an
electrophilic CF3 radical, which subsequently reacts with the alkene
(Figure 1). Afterward, the nucleophilic alkyl radical is disposed to
undergo intramolecular radical addition to the C2 position of the
pyridinium substrate to form the radical cation species, which
undergoes deprotonation and subsequent N–O bond cleavage to form
the alkoxy radicals. The resultant radical can initiate a radical chain
pathway that is quite productive, considering a relatively high
quantum yield (Φ = 5.1). In the process, an alternate reaction pathway
involving reduction by SET events in the photoredox catalytic cycle
can be envisioned to maintain the catalytic cycle.
[4] a) X. Liu, F. Xiong, X. Huang, L. Xu, P. Li, X. Wu, Angew. Chem. Int. Ed.
2013, 52, 6962; b) P. Gao, Y.-W. Shen, R. Fang, X.-H. Hao, Z.-H. Qiu,
F. Yang, X.-B. Yan, Q. Wang, X.-J. Gong, X.-Y. Liu, Y.-M. Liang,
Angew. Chem. Int. Ed. 2014, 53, 7629.
[5] a) X. Wu, M. Wang, L. Huan, D. Wang, J. Wang, C. Zhu, Angew. Chem.
Int. Ed. 2018, 57, 1640; b) Z. Wu, D. Wang, Y. Liu, L. Huan, C. Zhu,
J. Am. Chem. Soc. 2017, 139, 1388; c) M. Wang, Z. Wu, B. Zhang, C.
Zhu, Org. Chem. Front., 2018, 5,1896; d) S. Wu, X. Wu, D. Wang, C.
Zhu, Angew. Chem. Int. Ed., 2019, 58, 1499.
[6] a) E. Brachet, L. Marzo, M. Selkti, B. König, P. Belmont, Chem. Sci. 2016,
7, 5002; b) T. M. Monos, R. C. McAtee, C. R. J. Stephenson, Science
2018, 361, 1369.
[7] a) I. Kim, G. Kang, K. Lee, B. Park, D. Kang, H. Jung, Y.-T. He, M.-H.
Baik, S. Hong, J. Am. Chem. Soc. 2019, 141, 9239; b) Y.-T. He, J.
Won, J. Kim, B. Park, T. Kim, M.-H. Baik, S. Hong, Org. Chem. Front.,
2018, 5, 2595; for the examples of N-amidopyridinium salts, see: c) Y.
Moon, B. Park, I. Kim, G. Kang, S. Shin, D. Kang, M.-H. Baik, S.
Hong, Nat. Commun. 2019, 10, 4117; d) S. Jung, H. Lee, Y. Moon, H.-
Y. Jung, S. Hong, ACS Catal. 2019, 9, 9891.
[8] a) X. Ma, S. B. Herzon, J. Am. Chem. Soc. 2016, 138, 8718; b) X. Ma, H.
Dang, J. A. Rose, P. Rablen, S. B. Herzon, J. Am. Chem. Soc. 2017, 139,
5998.
Figure 1. Plausible reaction mechanism
In
summary,
a
visible-light-induced
site-selective
trifluoromethylative pyridylation of alkenes has been achieved via
4
This article is protected by copyright. All rights reserved.