Angewandte
Chemie
were almost equal toward the R and S enantiomers, and they
both decreased by a factor of two compared to those of the
wild-type enzyme.
[15] M.-J. Kim, Y. I. Chung, Y. K. Choi, H. K. Lee, D. Kim, J. Park, J.
Am. Chem. Soc. 2003, 125, 11494.
[
16] P. L. A. Overbeeke, J. Ottosson, K. Hult, J. A. Jongejan, J. A.
Duine, Biocatal. Biotransform. 1999, 17, 61.
In summary, the redesigned stereospecificity pocket of
Candida antarctica lipase B (CALB) was able to accommo-
date much larger groups than that of the wild-type lipase. This
change transformed the strongly R-selective wild-type CALB
into an S-selective mutant. The S selectivity increased with
temperature and it was dominated by entropy. For 1-phenyl-
ethanol the enantioselectivity changed by a factor of 8300000
as a result of the mutation. This was mainly achieved by an
increased reaction rate toward the S enantiomer, which
resulted in a very effective catalyst with a high specificity
constant of 1000 s m . The S selectivity of the Trp104Ala
mutant could be increased to a respectable value of E = 44
when the reaction was conducted in cis-decalin at 698C. The
altered enantioselectivity of CALB is a demonstration of the
possibilities offered by protein redesign and shows the
importance of the entropy contribution in enzyme catalysis.
[
[
17] J. Ottosson, L. Fransson, K. Hult, Protein Sci. 2002, 11, 1462.
18] a) R. S. Phillips, Enzyme Microb. Technol. 1992, 14, 417; b) K.
Watanabe, T. Koshiba, Y. Yasufuku, T. Miyazawa, S.-I. Ueji,
Bioorg. Chem. 2001, 30, 65; c) P. Lopez-Serrano, M. A. Wegman,
F. van Rantwijk, R. A. Sheldon, Tetrahedron Asymmetry 2001,
12, 235; d) B. Galunsky, S. Ignatova, V. Kasche, Biochim.
Biophys. Acta 1997, 1343, 130.
[
19] R. S. Phillips, Trends Biotechnol. 1996, 14, 13.
ꢀ1
ꢀ1
Received: March 16, 2005
Published online: June 23, 2005
Keywords: enantioselectivity · enzyme catalysis · hydrolases ·
.
protein engineering · thermodynamics
[
[
1] T. Ema, Curr. Org. Chem. 2004, 8, 1009.
2] R. J. Kazlauskas, A. N. E. Weissfloch, A. T. Rappaport, L. A.
Cuccia, J. Org. Chem. 1991, 56, 2656.
[
3] a) M. Cygler, P. Grochulski, R. J. Kazlauskas, J. D. Schrag, F.
Bouthillier, B. Rubin, A. N. Serreqi, A. K. Gupta, J. Am. Chem.
Soc. 1994, 116, 3180; b) A. Kovac, H. Scheib, J. Pleiss, R. D.
Schmid, F. Paltauf, Eur. J. Lipid Sci. Technol. 2000, 102, 61;
c) R. V. Muralidhar, R. R. Chirumamilla, R. Marchant, V. N.
Ramachandran, O. P. Ward, P. Nigam, World J. Microbiol.
Biotechnol. 2002, 18, 81.
[
4] H. Scheib, J. Pleiss, P. Stadler, A. Kovac, A. P. Potthoff, L.
Haalck, F. Spener, F. Paltauf, R. D. Schmid, Protein Eng. 1998,
11, 675.
[
5] M. Chen-Goodspeed, M. A. Sogorb, F. Wu, F. M. Raushel,
Biochemistry 2001, 40, 1332.
[
6] a) Y. Koga, K. Kato, H. Nakano, T. Yamane, J. Mol. Biol. 2003,
331, 585; b) D. Zha, S. Wilensek, M. Hermes, K.-E. Jaeger, M. T.
Reetz, Chem. Commun. 2001, 24, 2664.
[
[
7] B. A. Persson, A. L. E. Larsson, M. Le Ray, J.-E. Baeckvall, J.
Am. Chem. Soc. 1999, 121, 1645.
8] a) E. M. Anderson, K. M. Larsson, O. Kirk, Biocatal. Biotrans-
form. 1998, 16, 181; b) D. Rotticci, J. Ottosson, T. Norin, K. Hult,
Methods Biotechnol. 2001, 15, 261.
[
9] a) J. Uppenberg, N. Oehrner, M. Norin, K. Hult, G. J. Kleywegt,
S. Patkar, V. Waagen, T. Anthonsen, T. A. Jones, Biochemistry
1995, 34, 16838; b) C. Orrenius, F. Haeffner, D. Rotticci, N.
Ohrner, T. Norin, K. Hult, Biocatal. Biotransform. 1998, 16, 1.
[
[
10] F. Haeffner, T. Norin, K. Hult, Biophys. J. 1998, 74, 1251.
11] D. Rotticci, F. Haeffner, C. Orrenius, T. Norin, K. Hult, J. Mol.
Catal. B 1998, 5, 267.
[
[
[
12] A. O. Magnusson, J. C. Rotticci-Mulder, A. Santagostina, K.
Hult, ChemBioChem 2005, 6, 1051.
13] J. Ottosson, L. Fransson, J. W. King, K. Hult, Biochim. Biophys.
Acta 2002, 1594, 325.
14] B. Martin-Matute, M. Edin, K. Bogar, J.-E. Baeckvall, Angew.
Chem. 2004, 116, 6697; Angew. Chem. Int. Ed. 2004, 43, 6535.
Angew. Chem. Int. Ed. 2005, 44, 4582 –4585
ꢀ 2005 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
4585