Zhang et al.
FIGURE 1. Ligands evaluated in this study.
affinity to metals.4 Over the past decade, many efforts have been
devoted in this area.5-11 Typically, Yamamoto et al. reported
the Ag-catalyzed asymmetric Sakurai-Hosomi allylation of
ketones in which the (R)-DIFLUORPHOS was used as the chiral
ligand.6 Loh and co-workers developed two novel In-complex
catalysts in which the BINOL or PYBOX and InBr3 promoted
the asymmetric addition of allyltributylstannane to aromatic and
aliphatic ketones.7-8 Tagliavini et al. and Walsh et al. outlined
a method for the addition of allylic group to ketones using
BINOL and Ti(Oi-Pr)4,9 in which 2-propanol played a key role
in the catalytic system. Shibasaki and co-workers reported the
new approaches to asymmetric allylation of ketones and other
broad rangesof substrates by Cu(I)-tol-BINAP10 and Cu(II)-
(R,R)-iPr-DUPHOS11 catalysts. Despite the progress achieved,
the development of new approaches for the enantioselective
allylation of ketones is still highly desirable.
N-Oxides, a series of strong electron donors, have long been
recognized as suitable entities for ligand design.12 As a coin,
the application of chiral N-oxides has two sides. One is metal-
free catalytic transformations, and the other is as ligands in
transition metal catalysts.12b In our previous studies, continuing
attention has been paid to the synthesis and application of the
achiral and chiral N-oxide library.13 Very recently, N,N′-dioxides
as a highly efficient organocatalyst have been successfully used
in the cyanosilylation of aldehydes,14 aldimines,15 ketones,16 and
ketoimines.17 However, use of N-oxides in metal-mediated
asymmetric synthesis has been limited. We reported successful
attempts in the cyanosilylation of ketones dually catalyzed by
proline-based N,N′-dioxides and Ti(Oi-Pr)4 complexes,18,19 in
which N-oxide as the Lewis base activated the TMSCN. Herein,
we wish to report the enantioselective allylation of ketones
catalyzed by (S)-pipecolic acid-derived N,N′-dioxides and in-
dium(III) bromide complexes, which delivered good yields and
enantioselectivities.
(4) Walsh, P. J.; Kim, J. G.; Camp, E. H. Org. Lett. 2006, 8, 4413-
4416.
(5) For representative examples of enantioselective allylation of ketones,
see: (a) Leighton, J. L.; Burns, N. Z.; Hackman, B. M.; Ng, P. Y.; Powelson,
I. A. Angew. Chem. 2006, 118, 3895-3897; Angew. Chem., Int. Ed. 2006,
45, 3811-3813. (b) Schaus, S. E.; Lou, S.; Moquist, P. N. J. Am. Chem.
Soc. 2006, 128, 12660-12661. (c) Soderquist, J. A.; Canales, E.; Prasad,
K. G. J. Am. Chem. Soc. 2005, 127, 11572-11573. (d) Soderquist, J. A.;
Burgos, C. H.; Canales, E.; Matos, K. J. Am. Chem. Soc. 2005, 127, 8044-
8049. (e) Chong, J. M.; Wu, T. R.; Shen, L. Org. Lett. 2004, 6, 2701-
2704. (f) Woodward, S.; Cunningham, A. Synlett 2002, 43-44. (g)
Woodward, S.; Prieto, O. J. Organomet. Chem. 2006, 691, 1515-1519.
(h) Woodward, S.; Cunningham, A.; Mokalparekh, V.; Wilson, C. Org.
Biomol. Chem. 2004, 2, 741-748. (i) Tietze, L. F.; Kinzel, T.; Schmatz, S.
J. Am. Chem. Soc. 2006, 128, 11483-11495. (j) Tietze, L. F.; Vo¨lkel, L.;
Wulff, C.; Weigand, B.; Bittner, C.; McGrath, P.; Johnson, K.; Scha¨fer,
M. Chem. Eur. J. 2001, 7, 1304-1308. (k) Tietze, L. F.; Weigand, B.;
Vo¨lkel, L.; Wulff, C.; Bittner, C. Chem. Eur. J. 2001, 7, 161-168. (l) Tietze,
L. F.; Schiemann, K.; Wegner, C.; Wulff, C. Chem. Eur. J. 1998, 4, 1862-
1869. (m) Tietze, L. F.; Wegner, C.; Wulff, C. Eur. J. Org. Chem. 1998,
1639-1644. (n) Tietze, L. F.; Wegner, C.; Wulff, C. Synlett 1996, 471-
472. (o) Baba, A.; Yasuda, M.; Kitahara, N.; Fujibayashi, T. Chem. Lett.
1998, 8, 743-744. (p) Miller, J. J.; Sigman, M. S. J. Am. Chem. Soc. 2007,
129, 2752-2753.
(6) Wadamoto, M.; Yamamoto, H. J. Am. Chem. Soc. 2005, 127, 14556-
14557.
(7) Loh, T. P.; Lu, J.; Hong, M. L.; Ji, S. J.; Teo, Y. C. Chem. Commun.
2005, 4217-4218.
(8) Loh, T. P.; Teo, Y. C.; Goh, J. D. Org. Lett. 2005, 7, 2743-2745.
(9) For representative examples, see: (a) Wooten, A. J.; Kim, J. G.;
Walsh, P. J. Org. Lett. 2007, 9, 381-384. (b) Walsh, P. J.; Kim, J. G.;
Waltz, K. M.; Garcia, L. F.; Kwiatkowski, D. J. Am. Chem. Soc. 2004,
126, 12580-12585. (c) Walsh, P. J.; Waltz, K. M.; Gavenonis, J. Angew.
Chem. 2002, 114, 3849-3852; Angew. Chem., Int. Ed. 2002, 41, 3697-
3699. (d) Tagliavini, E.; Casolari, S.; D’Addario, D. Org. Lett. 1999, 1,
1061-1063. (e) Maruoka, K.; Kii, S. Chirality 2003, 15, 68-70. (f)
Maruoka, K.; Hanawa, H.; Kii, S. AdV. Synth. Catal. 2001, 343, 57-60.
(10) Shibasaki, M.; Yamasaki, S.; Fujii, K.; Wada, R.; Kanai, M. J. Am.
Chem. Soc. 2002, 124, 6536-6537.
Results and Discussion
In the preliminary study, (S)-pipecolic acid-derived N,N′-
dioxide L1 (Figure 1) was employed as an organocatalyst
for the enantioselective allylation of acetophenone with tetraal-
lyltin. Unfortunately, no homoallylic alcohol was obtained
(12) For review, see: (a) Chelucci, G.; Murineddu, G.; Pinna, A. G.
Tetrahedron: Asymmetry 2004, 15, 1373-1389. (b) Kocˇovsky´, P.; Malkov,
A. Eur. J. Org. Chem. 2007, 29-36.
(11) Shibasaki, M.; Wada, R.; Oisak, K.; Kanai, M. J. Am. Chem. Soc.
2004, 126, 8910-8911.
5228 J. Org. Chem., Vol. 72, No. 14, 2007