Journal of the American Chemical Society
Article
(25) The case of product 12o is noteworthy, as the corresponding
reaction is surprisingly less enantioselective with ap-2 (89:11 er); with
a sterically more demanding aminophenol (ap-4, see Scheme 17),
containing a Si(1-naphthyl)3 moiety, the selectivity can be improved
to 92:8 er. To gain insight regarding this apparent anomaly, we carried
out DFT calculations, but these studies proved to be inconclusive, as
the energy differences between the competing diastereomeric
transition structures remained the same (∼3 kcal/mol). At the
present we do not have a plausible rationale for this unexpected
selectivity.
(26) (a) Zhang, W.; Loebach, J. L.; Wilson, S. R.; Jacobsen, E. N.
Enantioselective epoxidation of unfunctionalized olefins catalyzed by
(salen)manganese complexes. J. Am. Chem. Soc. 1990, 112, 2801−
2803. (b) Dexter, A. F.; Lakner, F. J.; Campbell, R. A.; Hager, L. P.
Highly enantioselective epoxidation of 1,1-disubstituted alkenes
catalyzed by chloroperoxidase. J. Am. Chem. Soc. 1995, 117, 6412−
6413. (c) Wang, B.; Wong, O. A.; Zhao, M.-X.; Shi, Y. Asymmetric
epoxidation of 1,1-disubstituted terminal olefins by chiral dioxirane
via a planar-like transition state. J. Org. Chem. 2008, 73, 9539−9543.
(d) Boutureira, O.; McGouran, J. F.; Stafford, R. L.; Emmerson, D. P.
G.; Davis, B. G. Accessible sugars as asymmetric olefin epoxidation
organocatalysts: glucosaminide ketones in the synthesis of terminal
epoxides. Org. Biomol. Chem. 2009, 7, 4285−4288. For a review on
catalytic enantioselective epoxidation of alkenes, see: (e) Xia, Q.-H.;
Ge, H.-Q.; Ye, C.-P.; Liu, Z.-M.; Su, K.-X. Advances in homogeneous
and heterogeneous catalytic asymmetric epoxidation. Chem. Rev.
2005, 105, 1603−1662.
Rev. 2014, 114, 2432−2506. (i) Oehlrich, D.; Prokopcova, H.; Gijsen,
J. M. The evolution of amidine-based brain penetrant BACE1
inhibitors. Bioorg. Med. Chem. Lett. 2014, 24, 2033−2045. (j) Balan,
G.; Chou, C.-H.; Kim, M.; Kirschberg, T. A.; Link, J. O.; Phillips, G.;
Saito, R. D.; Squires, N. H.; Taylor, J. G.; Watkins, W. J.; Wright, N.
E. 4,6-Diaminoquinazolines as COT modulators and methods of use
thereof. U.S. Patent US10,059,695, August 28, 2018.
(31) Lewis basic heterocycles, such as an indole, pyridyl group,
imidazole, or alkyl imidazole moiety, can cause diminution in yield
and er (e.g., 1b in the presence of 1-methylimidazole, 39% conversion,
89:11 er vs >98% conversion, 97% yield, 93:7 er). Furthermore,
control experiments show that the presence of a carboxylic acid leads
to considerable reduction in efficiency (<10% conversison), likely
because the catalyst’s amine group is converted to an ammonium
moiety. See Scheme 19 and the associated discussion for further
analysis.
(32) Dheer, D.; Singh, V.; Shankar, R. Medicinal attributes of 1,2,3-
triazoles: current developments. Bioorg. Chem. 2017, 71, 30−54.
(33) (a) Shizheng, Z.; Weimin, P. Fluoro-contained 1H-1,2,3-
triazaazoles compounds, preparation method thereof and their use.
CN Patent CN1,422,850, June 11, 2003. (b) Agalave, S. G.; Maujan,
S. R.; Pore, V. S. Click chemistry: 1,2,3-triazoles as pharmacophores.
Chem. - Asian J. 2011, 6, 2696−2718. (c) Zhou, C.-H.; Wang, Y.
Recent researches in triazole compounds as medicinal drugs. Curr.
Med. Chem. 2012, 19, 239−280. (d) Hou, X.; Du, J.; Liu, R.; Zhou, Y.;
Li, M.; Xu, M.; Fang, H. Enhancing the sensitivity of pharmacophore-
based virtual screening by incorporating customized ZBG features: a
case study using histone deacetylease 8. J. Chem. Inf. Model. 2015, 55,
861−871. (e) Bonacorso, H. G.; Libero, F. M.; Luz, F. M.; Moraes,
M. C.; Cavinatto, S.; Stefanello, F. S.; Rodrigues, M. B.; Zanatta, N.;
Marints, M. A. P. 4-Trichloroacetyl-1,2,3-triazoles: a versatile building
block for rapid assessment of carbohydrazides and Rufinamide
derivatives. Tetrahedron Lett. 2017, 58, 3827−3830.
(34) (a) Grimm, E. L.; Ducharme, Y.; Frenette, R.; Friesen, R.;
Gagnon, M.; Juteau, H.; Laliberte, S.; Mackay, B.; Gareau, Y. Novel
pharmaceutical compounds. U.S. Patent Appl. US188521, August 7,
2008. (b) Ouellet, S.G.; Gauvreau, D.; Cameron, M.; Dolman, S.;
Campeau, L.-C.; Hughes, G.; O’Shea, P. D.; Davies, I. W. Convergent,
fit-for-purpose, kilogram-scale synthesis of a 5-lipoxygenase inhibitor.
Org. Process Res. Dev. 2012, 16, 214−219.
(27) (a) Sone, T.; Yamaguchi, A.; Matsunaga, S.; Shibasaki, M.
Catalytic asymmetric synthesis of 2,2-disubstituted terminal epoxides
via dimethyloxosulfonium methylide addition to ketones. J. Am. Chem.
Soc. 2008, 130, 10078−10079. (b) Sone, T.; Yamaguchi, A.;
Matsunaga, S.; Shibasaki, M. Enantioselective synthesis of 2,2-
disubstituted terminal epoxides via catalytic asymmetric Corey-
Chaykovsky epoxidation of ketones. Molecules 2012, 17, 1617−1634.
(28) Zhang, M.; Hu, Y.; Zhang, S. Multi-product classes obtained
from allylation of α-halo ketones with allylzinc bromides. Chem. - Eur.
J. 2009, 15, 10732−10735.
(29) Matsuzawa, A.; Shiraiwa, J.; Kasamatsu, A.; Sugita, K.
Enantioselective, protecting-group-free total synthesis of boscartin F.
Org. Lett. 2018, 20, 1031−1033.
(35) (a) Bonacorso, H. G.; Moraes, M. C.; Wiethan, C. W.; Luz, F.
M.; Meyer, A. R.; Zanatta, N.; Martins, M. A. P. Synthesis of 1H-
1,2,3-triazoles−rufinamide analogs by 1,3-dipolar cycloaddition and
electrocyclization reactions of trifluoroacetyl enolethers under thermal
solventless conditions. J. Fluorine Chem. 2013, 156, 112−119.
(b) Bonacorso, H. G.; Wiethan, C. W.; Belo, C. R.; Moraes, M. C.;
Martins, M. A. P.; Zanatta, N. Organoallylaluminum reagents
promote easy access to trihalomethyl triazolyl homoallylic alcohols
analogous to rufinamide. Tetrahedron Lett. 2014, 55, 2283−2285. For
related studies on the same class of compounds, see: (c) Bonacorso,
H. G.; Moraes, M. C.; Luz, F. M.; Quintanta, P. S.; Zanatta, N.;
Martins, M. A. P. New solventless and metal-free synthesis of
antiepileptic drug 1-(2,6-difluorobenzyl)-1H-1,2,3-triazole-4-carboxa-
mide (rufinamide) and analogues. Tetrahedron Lett. 2015, 56, 441−
444. (d) Reference 29e..
(30) (a) Di Bari, C.; Pastore, G.; Roscigno, G.; Schechter, P. J.;
Sjoerdsma, A. Late-stage African trypanomiasis and eflornithine. Ann.
Intern. Med. 1986, 105, 803−805. (b) Meltzer, E. O.; Orgel, H. A.;
Bronsky, E. A.; Furukawa, C. T.; Grossman, J.; LaForce, C. F.;
Lemanske, R. F.; Paull, B. D.; Pearlman, D. S.; Ratner, P. H.; Spector,
S. L.; Tinkelman, D. G.; van As, A.; Rogenes, P. R. A dose-ranging
study of fluticasone propionate aqueous nasal spray for seasonal
allergic rhinitis assessed by symptoms, rhinomanometry, and nasal
cytology. J. Allergy Clin. Immunol. 1990, 86, 221−230. (c) Nakatani,
M.; Kugo, R.; Miyazaki, M.; Fujinami, M.; Ueno, R.; Takahaski, S.
Isoxazoline derivative and herbicide comprising the same as active
ingredient. U.S. Patent US7,238,689 A1, July 3, 2007. (d) Karl, C.;
Roscher, R. Roflumilast and glycopyrronium combination. U.S. Patent
Appl. US167496, July 19, 2007. (e) Li, J.; Smith, D.; Krishnananthan,
S.; Hartz, R. A.; Dasgupta, B.; Ahuja, V.; Schmitz, W. D.; Bronson, J.
J.; Mathur, A.; Barrish, J. C.; Chen, B.-C. An efficient, direct bis-ortho-
chlorination of 4-(Difluoromethoxy)aniline and its application to the
synthesis of BMS-665053, a potent and selective pyrazinone-
containing corticotropin-releasing factor-1 receptor antagonist. Org.
Process Res. Dev. 2012, 16, 156−159. (f) Rochling, A.; Reizlein, K.;
Baur, P. Use of alkyl carboxylic acid amides as penetration promoters.
U.S. Patent Appl. US157310, June 21, 2012. (g) Sundaram, G. S. M.;
Harpstrite, S. E.; Kao, J. L.-F.; Collins, S. D.; Sharma, V. A new
nucleoside analogue with potent activity against mutant sr39 herpes
simplex virus-1 (HSV-1) thymidine kinase (TK). Org. Lett. 2012, 14,
3568−3571. (h) Wang, J.; Sanchez-Rosello, M.; Acena, J. L.; del Pozo,
C.; Sorochinsky, A. E.; Fustero, S.; Soloshonok, V. A.; Liu, H.
Fluorine in pharmaceutical industry: fluorine-containing drugs
introduced to the market in the last decade (2001−2011). Chem.
(36) (a) Ladouceur, S.; Soliman, A. M.; Zysman-Colman, E. One-
pot click synthesis of 1N-alkyl-4-aryl-1,2,3-triazoles from protected
arylalkynes and alkyl bromides. Synthesis 2011, 2011, 3604−3611.
(b) Hosseinzadeh, R.; Abolfazli, M. K.; Mohseni, M.; Mohadjerani,
M.; Lasemi, Z. Efficient synthesis and antibacterial activities of some
novel 1,2,3-triazoles prepared from propargylic alcohols and benzyl
azides. J. Heterocycl. Chem. 2014, 51, 1298−1305. (c) Huang, S.-F.;
Sun, H.-Z.; Shan, G.-G.; Li, F.-S.; Zeng, Q.-Y.; Zhao, K.-Y.; Su, Z.-M.
Rational design and synthesis of cationic Ir(III) complexes with
triazolate cyclometalated and ancillary ligands for multi-color tuning.
Dyes Pigm. 2017, 139, 524−532.
(37) Shin, H. I.; Choi, H. W.; Heo, T. H.; Lee, K. W.; Lee, J. H.;
Park, K. S. DPP-IV inhibitors for use in the treatment of NAFLD. U.S.
Patent Appl. US92510, April 21, 2011.
N
J. Am. Chem. Soc. XXXX, XXX, XXX−XXX