Recently, we have developed effective systems for the Cu-
catalyzed coupling of aryl iodides and bromides with cyclic
hindered substrate (either a 2- or 4-substituted imidazole or
a 2-substituted aryl halide) have been disclosed. Herein, we
describe our recent work, which significantly expands the
substrate scope for the coupling of imidazoles with aryl
halides.
12a,b
12c,d,f
12d,e
12f,g
secondary alkylamines,
amides,
indoles,
pyrroles,
12g
pyrazoles, indazoles, and triazoles. Despite these protocols
that could be carried out under mild conditions for the
N-arylation of a number of nitrogen heterocycles through
the use of N,N′-dimethylethylenediamine-based ligands, little
progress in our own work had been made for the coupling
Our initial investigations of the coupling of 2-iodotoluene
with imidazole demonstrated that 4,7-dimethoxy-1,10-
phenanthroline (L) in combination with (CuOTf)
2
‚PhH and
1
2g
of imidazoles.
Cs CO in CH CN provided an improved catalyst system
2
3
3
for this transformation. As tetraethylammonium carbonate
(TEAC) had been recently shown to increase reaction rates
in the Cu-catalyzed N-arylation of imidazoles and benzimid-
Subsequent reports by other groups have disclosed the use
13a
13b,c
of salicylaldoxime derivatives, amino acid derivatives,
DMEDA,1 4,7-dichloro-1,10-phenanthroline, and 8-hy-
3d
13e
1
3f
1
3f
13g
azoles, we attempted to employ this base in our system.
However, yields of N-o-tolyl imidazole were low due to
N-alkylation of the imidazole. This problem could be
alleviated while maintaining increased reaction rates by using
droxyquinoline, aminoarenethiol, and oxime-phosphine
oxides
1
3h
as ligands in the Cu-catalyzed N-arylation of
imidazoles with aryl halides. However, very few examples
of the coupling of imidazoles with aryl bromides or of a
1
4
poly(ethylene glycol) (PEG) as a solid-liquid phase-
1
5
transfer catalyst with Cs
PEG as an additive, we were able to use a wider variety of
inexpensive and stable copper precursors (e.g., Cu O, CuI)
and polar aprotic solvents (e.g., CH CN, EtCN, n-PrCN,
2 3
CO as base. Furthermore, with
(1) (a) Quan, M. L.; Lam, P. Y. S.; Han, Q.; Pinto, D. J. P.; He, M. Y.;
Li, R.; Ellis, C. D.; Clark, C. G.; Teleha, C. A.; Sun, J. H.; Alexander, R.
S.; Bai, S.; Luettgen, J. M.; Knabb, R. M.; Wong, P. C.; Wexler, R. R. J.
Med. Chem. 2005, 48, 1729. (b) Dyck, B.; Goodfellow, V. S.; Phillips, T.;
Grey, J.; Haddach, M.; Rowbottom, M.; Naeve, G. S.; Brown, B.; Saunders,
J. Bioorg. Med. Chem. Lett. 2004, 14, 1151. (c) Smallheer, J. M.; Alexader,
R. S.; Wang, J.; Wang, S.; Nakajima, S.; Rossi, K. A.; Smallwod, A.;
Barbera, F.; Burdick, D.; Luettgen, J. M.; Knabb, R. M.; Wexler, R. R.;
Jadhav, P. K. Bioorg. Med. Chem. Lett. 2004, 14, 5263. (d) Venkatesan,
A. M.; Gu, Y.; Santos, O. D.; Abe, T.; Agarwal, A.; Yang, Y.; Petersen, P.
J.; Weiss, W. J.; Mansour, T. S.; Nukaga, M.; Hujer, A. M.; Bonomo, R.
A.; Knox, J. R. J. Med. Chem. 2004, 47, 6556. (e) Lange, J. H. M.; van
Stuivenberg, H. H.; Coolen, H. K. A. C.; Adolfs, T. J. P.; McCreary, A.
C.; Keizer, H. G.; Wals, H. C.; Veerman, W.; Borst, A. J. M.; de Looff,
W.; Verveer, P. C.; Kruse, C. G. J. Med. Chem. 2005, 48, 1823. (f)
Barchechath, S. D.; Tawatao, R. I.; Corr, M.; Carson, D. A.; Cottam, H. B.
J. Med. Chem. 2005, 48, 6409. (g) Mano, T.; Stevens, R. W.; Kazuo, A.;
Nakao, Y. O.; Sakakibara, M.; Okumura, T. T.; Miyamoto, K. Bioorg. Med.
Chem. 2003, 11, 3879. (h) Mano, T.; Okumura, Y.; Sakakibara, M.;
Okumura, T.; Tamura, T.; Miyamoto, K.; Stevens, R. W. J. Med Chem.
2
3
DMF, DMSO, NMP) to effect the desired transformation.
Using the catalyst system based on L, we first explored
the scope of the reaction with m- and p-substituted aryl
halides (Table 1). We found that we were able to arylate
imidazole with iodobenzene in excellent yields in 3 h with
5
% Cu at 110 °C in NMP and in 48 h with 0.05% Cu in
n-PrCN (entry 1). To the best of our knowledge, no Cu-
based system for C-N bond formation has previously been
reported to achieve 2000 turnovers. The reactions of aryl
bromides possessing ester and nitrile groups were inefficient
under the standard conditions because of the partial hydroly-
sis of the ester to benzoic acid and of the nitrile to amide.
However, by using lower reaction temperatures (80-90 °C)
with aryl iodide substrates, excellent yields of the ester- and
nitrile-bearing N-arylated products could be obtained (entries
2
004, 47, 720. (i) Roppe, J.; Smith, N. D.; Huang, D.; Tehrani, L.; Wang,
B.; Anderson, J.; Brodkin, J.; Chung, J.; Jiang, X.; King, C.; Munoz, B.;
Varney, M. A.; Prasit, P.; Cosford, N. D. P. J. Med. Chem. 2004, 47, 4645.
j) Voets, M.; Antes, I.; Scherer, C.; Muller-Viera, U.; Biemel, K.; Barassin,
C.; Marchais-Oberwinkler, S.; Hartmann, R. W. J. Med. Chem. 2005, 48,
632.
(
6
(
(
2) Lindley, J. Tetrahedron 1984, 40, 1433.
3) Jiang, L.; Buchwald, S. L. Palladium-Catalyzed Aromatic Carbon-
2
and 4). We were able to exploit the intrinsic reactivity
differences of aryl halides in Cu-catalyzed amination reac-
Nitrogen Bond Formation. In Metal-Catalyzed Cross-Coupling Reactions,
nd ed.; de Meijere, A., Diederich, F., Eds.; Wiley-VCH: Weinheim, 2004;
2
2,4
tions (I > Br . Cl > F), to couple aryl iodides selectively
pp 699-760.
in the presence of substrates containing aryl bromides,
chlorides, and fluorides (entries 7, 10, and 15). Electron-
rich, -neutral, and -deficient aryl iodides all provide products
(
4) (a) Beletskaya, I. P.; Cheprakov, A. V. Coord. Chem. ReV. 2004,
2
5
337. (b) Ley, S. V.; Thomas, A. W. Angew. Chem., Int. Ed. 2003, 42,
400. (c) Kunz, K.; Scholz, U.; Ganzer, D. Synlett 2003, 2428.
(
5) Alvarado, L. L.; Aveda n˜ o, C.; Men e´ ndez, J. C. J. Org. Chem. 1995,
0, 5678.
6) (a) Lam, P. Y.; Clark, C. G.; Sauber, S.; Adams, J.; Winters, M. P.;
6
(
(13) (a) Cristau, H. J.; Cellier, P. P.; Spindler, J. F.; Taillefer, M. Chem.-
Eur. J. 2004, 10, 5607. (b) Zhang, H.; Cai, Q.; Ma, D. J. Org. Chem. 2005,
70, 5164. (c) Ma, D.; Cai, Q. Synlett 2004, 128. (d) Alcalde, E.; Dinar e` s,
I.; Rodr ´ı guez, S.; Garcia de Miguel, C. Eur. J. Org. Chem. 2005, 1637. (e)
Kuil, M.; Bekedam, L.; Visser, G. M.; van den Hoogenband, A.; Terpstra,
J. W.; Kamer, P. C. J.; Kamer van Leeuwen, P. W. N. M.; van Strijdonck,
G. P. F. Tetrahedron Lett. 2005, 46, 2405. (f) Liu, L.; Frohn, M.; Xi, N.;
Donminguez, C.; Hungate, R.; Reider, P. J. J. Org. Chem. 2005, 70, 10135.
(g) Jerphagnon, T.; van Klink, G. P. M.; de Vries, J. G.; van Koten, G.
Org. Lett. 2005, 7, 5241. (h) Xu, L.; Zhu, D.; Wang, R.; Wan, B.
Tetrahedron 2005, 61, 6553.
(14) Recent examples of the use of PEG as a solvent in transition-metal-
catalyzed processes include: (a) Nobre, S. M.; Wolke, S. I.; da Rosa, R.
G.; Monteiro, A. L. Tetrahedron Lett. 2004, 45, 6527. (b) Reed, N. N.;
Dickerson, T. J.; Boldt, G. E.; Janda, K. D. J. Org. Chem. 2005, 70, 1728.
(c) Svennebring, A.; Garg, N.; Nilsson, P.; Hallberg, A.; Larhed, M. J.
Org. Chem. 2005, 70, 4720. (d) Liu, L.; Zhang, Y.; Wang, Y. J. Org. Chem.
2005, 70, 6122. (e) Wang, L.; Zhang, Y.; Liu, L.; Wang, Y. J. Org. Chem.
2006, 71, 1284.
Chan, D. M. T.; Combs, A. Tetrahedron Lett. 1998, 39, 2941. (b) Collman,
J. P.; Zhong, M.; Zeng, L.; Costanzo, S. J. Org. Chem. 2001, 66, 1528. (c)
Lan, J. B.; Li, C.; Yu, X.; You, J. S.; Xie, R. G. Chem. Commun. 2004,
1
88.
(7) Fedorov, A. Y.; Finet, J. P. Tetrahedron Lett. 1999, 40, 2747.
8) Lam, P. Y. S.; Deudon, S.; Averill, K. M.; Li, R.; He, M. Y.;
(
DeShong, P.; Clark, C. G. J. Am. Chem. Soc. 2000, 122, 7600.
(
9) Kang, S. K.; Lee, S. H.; Lee, D. Synlett 2000, 1022.
(10) Lam, P. Y. S.; Clark, C. G.; Saubern, S.; Adams, J.; Averill, K.
M.; Chan, D. M. T.; Combs, A. Synlett 2000, 674.
11) Kiyomori, A.; Marcoux, J. F.; Buchwald, S. L. Tetrahedron Lett.
999, 40, 2657.
12) (a) Kwong, F. Y.; Klapars, A.; Buchwald, S. L. Org. Lett. 2002, 4,
81. (b) Kwong, F. Y.; Buchwald, S. L. Org. Lett. 2003, 5, 793. (c) Klapars,
(
1
(
5
A.; Huang, X.; Buchwald, S. L. J. Am. Chem. Soc. 2002, 124, 7421. (d)
Klapars, A.; Antilla, J. C.; Huang, X.; Buchwald, S. L. J. Am. Chem. Soc.
001, 123, 7727. (e) Antilla, J. C.; Klapars, A.; Buchwald, S. L. J. Am.
Chem. Soc. 2002, 124, 11684. (f) Klapars, A.; Parris, S.; Anderson, K. W.;
Buchwald, S. L. J. Am. Chem. Soc. 2004, 126, 3529. (g) Antilla, J. C.;
Baskin, J. M.; Barder, T. E.; Buchwald, S. L. J. Org. Chem. 2004, 69,
2
(15) Crown-6 has been used to accelerate the coupling of diarylamines
with aryl iodides using Cu (stoichiometric)/K2CO3/o-dichlorobenzene/
reflux: Gauthier, S.; Fr e´ chet, J. M. J. Synthesis 1987, 383.
5
578.
2780
Org. Lett., Vol. 8, No. 13, 2006