10.1002/anie.201804034
Angewandte Chemie International Edition
COMMUNICATION
variety of N-H bonds with phenylsilane (PhSiH3) as a reductant.
Aliphatic secondary amines, such as diethyl amine, morpholine,
and piperidine, can be quantitaively converted to their formamides
with a turnover number (TON) over 12000 at room temperature
within only 3 h, as evaluated by 1H NMR and mass spectral
analysis (Entry 1-3, Table 1 and Supporting Information). Notably,
increasing the steric hindrance at nitrogen atom does not shut
down the catalytic activity. Diisopropylamine (i-Pr2NH) and tert-
butylamine (t-BuNH2) had 75% formylated yields under the same
conditions (Entry 4-5, Table 1). For the cases of aniline derivatives,
interestingly, both N-H bonds proved reactive but the bis-
formylated products accounted for relatively small. Electron-
donating group in aniline (e.g. p-methoxy) has a positive influence
on the catalytic conversion (in a shorter time, 1 h). On the contrary,
electron-withdrawing substituent group (e.g. p-nitro) impeded the
reaction (Entry 6-8, Table 1). Other less reactive and fragile N-H
bonds was also explored. The formylation of benzophenone imine
was efficient (65% yield) and the reduction of C=N bond was not
observed (Entry 9, Table 1). Similarly, utilizing the nanocatalysts
to catalyze N-heterocycles provided delightful results. Imidazole
and triazole displayed over 40% yields with a longer reactive time
(~8 h), but avoiding the hydrogenation of heterocycles (Entry 10-
11, Table 1). On the other hand, we focused on the reusability of
the nanocatalysts. By applying CO2 stimulus to regenerate the
micelles for at least 8 times, their catalytic activity towards various
categories of amines (diethyl amine, morpholine, aniline, imine
and imidazole) retained over 80% (Figure 3). Overall, this CO2-
bound FLP polymer nanoparticles can be regarded as a universal
catalytic nanoplatform for recyclable C1 conversion.
for recyclable CO2 catalytic conversion. Although there still exists
defects, merging of FLP chemistry and polymer will open a new
avenue to construct gas-responsive materials, and provide a new
outlook in sustainable C1 chemistry.
Acknowledgements
This work was finacially supported by National Natural Science
Foundation of China (21674022 and 51703034).
Keywords: carbon dioxide conversion • frustrated Lewis pair •
block copolymer • responsive polymer • nanocatalyst
[1]
[2]
a) A. Darabi, P. G. Jessop, M. F. Cunningham, Chem. Soc. Rev. 2016,
45, 4391-4436; b) S. J. Lin, P. Theato, Macromol. Rapid Commun. 2013,
34, 1118-1133.
a) Q. Yan, R. Zhou, C. K. Fu, H. J. Zhang, Y. W. Yin, J. Y. Yuan, Angew.
Chem. Int. Ed. 2011, 50, 4923-4927; Angew. Chem. 2011, 123, 5025-
5029; b) Q. Yan, Y. Zhao, Angew. Chem. Int. Ed. 2013, 52, 9948-9951;
Angew. Chem. 2013, 125, 01132-10135; c) Q. Yan, Y. Zhao, J. Am.
Chem. Soc. 2013, 135, 16300-16303.
[3]
a) T. Fang, Z. Y. Wan, M. Huo, J. Y. Yuan, Adv. Sustainable Syst. 2017,
201700051; b) P. G. Jessop, S. M. Mercer, D. J. Heldebrant, Energ.
Environ. Sci. 2012, 5, 7240-7253; c) Y. Qian, Q. Zhang, X. Q. Qiu, S. P.
Zhu, Green Chem. 2014, 16, 4963-4968; d) Y. M. Zhang, Y. D. Zhang,
C. Wang, X. F. Liu, Y. Fang, Y. J. Feng, Green Chem. 2016, 18, 392-
396.
[4]
[5]
a) H. L. Che, M. Huo, L. Peng, T. Fang, N. Liu, L. Feng, W. Yen, J. Y.
Yuan, Angew. Chem. Int. Ed. 2015, 54, 8934-8938; Angew. Chem. 2015,
127, 9062-9066; b) S. Kumar, X. Tong, Y. Dory, M. Lepage, Y. Zhao,
Chem. Commun. 2013, 49, 90-92; c) S. J. Lin, J. J. Shang, P. Theato,
ACS Macro Lett. 2018, 7, 431-436.
a) Q. Yan, H. J. Zhang, Y. Zhao, ACS Macro Lett. 2014, 3, 472-476; b)
S. J. Lin, J. J. Shang, X. X. Zhang, P. Theato, Macromol. Rapid Commun.
2018, 39, 1700313; c) L. Lei, Q. Zhang, S. X. Shi, S. P. Zhu, ACS Macro
Lett. 2016, 5, 828-832; d) A. C. Feng, J. Liang, J. Z. Ji, J. B. Dou, S. F.
Wang, J. Y. Yuan, Sci. Rep. 2016, 6, 23624.
[6]
[7]
Q. Yan, Y. Zhao, Chem. Commun. 2014, 50, 11631-11641.
a) D. W. Stephan, G. Erker, Angew. Chem. Int. Ed. 2015, 54, 6400-6441;
Angew. Chem. 2015, 127, 6498-6541; b) D .W. Stephan, Science 2016,
354, aaf7229.
[8]
[9]
D. W. Stephan, J. Am. Chem. Soc. 2015, 137, 10018-10032.
G. C. Welch, R. R. S. Juan, J. D. Masuda, D. W. Stephan, Science 2006,
314, 1124-1126.
[10] M. Wang, F. Nudelman, R. R. Matthes, M. P. Shaver, J. Am. Chem. Soc.
2017, 139, 14232-14236.
[11] a) Gutmann, V. Coord. Chem. Rev. 1976, 18, 225-255; b) I. B. Sivaev,
V. I. Bregadze, Coord. Chem. Rev. 2014, 270-271, 75-88.
Figure 3. Catalytic activities of the CO2-bound FLP polymer nanocatalysts after
many times of catalytic cycle (black column: the first catalytic cycle; red column:
the eighth catalytic cycle) with a various categories of amine substrates.
[12] a) B. Wrackmeyer, Annu. Rep. NMR Spectro. 1988, 20, 61-200; b) F.
Focante, R. Leardini, A. Mazzanti, P. Mercandelli, D. Nanni,
Organometallics 2006, 25, 2166-2172.
[13] T. Beringhelli, D. Donghi, D. Maggioni, G. D’Alfonso, Coord. Chem. Rev.
2008, 252, 2292-2313.
Conventional CO2-sensitive systems have to rely on Brønsted
acid-base equilibrium principle. This work has broken through this
limit and demonstrated a new generation of CO2-responsive
system based on frustrated Lewis pair (FLP) principle. Introducing
complementary FLP units into polymer, CO2 gas can bridge the
polymer chains to achieve CO2-triggered micellization. This dative
bonding between CO2 and FLP units enables the polymers to
respond to CO2 in ultrafast speed, excellent reversibility and wide
applicability. Moreover, since CO2 bound in the micelles are highly
active, the FLP polymer nanoparticles can act as nanocatalysts
[14] C. M. Mömming, E. Otten, G. Kehr, R. Fröhlich, S. Grimme, D. W.
Stephan, G. Erker, Angew. Chem. Int. Ed. 2009, 48, 6643-6646; Angew.
Chem. 2009, 121, 6770-6773.
[15] S. M. Habibi Khorassani, M. T. Maghsoodlou, A. Ebrahimi, M.
Zakarianejad, M. Fattahi, J. Solution Chem. 2007, 36, 1117-1127.
[16] a) J. Artz, T. E. Müller, K. Thenert, Chem. Rev. 2018, 118, 434-504; b)
Q. Liu, L. P. Wu, R. Jackstell, M. Beller, Nat. Commun. 2015, 6, 5933.
[17] a) S. Schreiner, J. Y. Yu, L. Vaska, J. Chem. Soc., Chem. Commun. 1988,
602; b) F. C. Liu, M. B. Abrams, R. T. Baker, W. Tumas, Chem. Commun.
This article is protected by copyright. All rights reserved.