10.1002/cctc.201700316
ChemCatChem
COMMUNICATION
a)
Ni1Co1@NC (8 mol%)
HSiEt3 (1.1 equiv)
[4]
[5]
a) D. Gauthier, A. T. Lindhardt, E. P. K. Olsen, J. Overgaard, T.
Skrydstrup, J. Am. Chem. Soc. 2010, 132, 7998; b) C. R. Larsen, D. B.
Grotjahn, J. Am. Chem. Soc. 2012, 134, 10357; c) E. Larionov, H. Li, C.
Mazet, Chem. Commun. 2014, 50, 9816. Also, see reference 1.
For examples of homogeneous nickel-catalyzed olefin migrations, see:
a) A. Wille, S. Tomm, H. Frauenrath, Synthesis 1998, 305; b) J.
Breitenfeld, O. Vechorkin, C. Corminboeuf, R. Scopelliti, X: Hu,
Organometallics 2010, 29, 3686; c) L. Wang, C. Liu, R. Bai, Y. Pan, A.
Lei, Chem. Commun. 2013, 49, 7923; d) W.-C. Lee, C.-H. Wang, Y.-H.
Lin, W.-C. Shih, T.-G. Ong, Org. Lett. 2013, 15, 5358; e) F. Weber, A.
Schmidt, P. Röse, M. Fischer, O. Burghaus, G. Hilt, Org. Lett. 2015, 17,
2952.
+
Ph
Me
Ph
Me
Ph
0.6 mmol
73%
8%
( : >99:1)
E Z =
MesH (1 M), 140 °C, 24 h
(
:
64:34)
E Z =
b)
Ni1Co1@NC (8 mol%)
HSiEt3 (1.1 equiv)
10% of other
internal alkenes
+
Me
C8H17
C8H17
0.6 mmol
85%
MesH (1 M), 140 °C, 24 h
(E:Z = 70:30)
c)
Ni1Co1@NC (8 mol%)
HSiEt3 (1.1 equiv)
O
O
O
+
Ph
Me
Ph
Me
Ph
0.6 mmol
36%
20%
MesH (1 M), 140 °C, 24 h
60% conversion
(
: 55:45)
E Z =
[6]
[7]
For a seminal reference, see: L. Roos, M. Orchin, J. Am. Chem. Soc.
1965, 87, 5502.
Scheme 2. Isomerization of a) 4-phenyl-1-butene, b) 1-dodecene, and c) allyl
phenyl ether. Yields are based on 1H NMR analysis of the crude reaction
mixture relative to an internal standard.
For recent examples of homogeneous cobalt-catalyzed olefin
migrations, see: a) F. Pünner, A. Schmidt, G. Hilt, Angew. Chem. Int.
Ed. 2012, 51, 1270; b) C. Chen, T. R. Dugan, W. W. Brennessel, D. J.
Weix, P. L. Holland, J. Am. Chem. Soc. 2014, 136, 945; c) S. W. M.
Crossley, F. Barabé, R. A. Shenvi, J. Am. Chem. Soc. 2014, 136,
16788; d) A. Schmidt, A. R. Nödling, G. Hilt, Angew. Chem. Int. Ed.
2015, 54, 801.
In summary, we have demonstrated that a heterogeneous
catalyst, based on the earth-abundant metals nickel and cobalt,
can facilitate olefin migration producing highly valuable 1-
propenylarenes. The catalyst material, consisting of metal alloy
nanoparticles encapsulated in nitrogen-doped carbon, is readily
prepared from cheap and commercially available precursors.
Furthermore, the heterogeneous nature of the catalysis ensures
easy recovery and reuse of the catalyst. For the allylarene
substrates, this new heterogeneous system can match the TOF
and selectivity of previously reported homogeneous nickel and
cobalt catalysts.[5b,7b] In addition to allylarenes, the developed
catalytic system can also be applied for the selective one
position migration of aliphatic olefins. Finally, preliminary studies
on reaction progress and pathway were disclosed.
[8]
[9]
F. Wang, J. Mielby, F. H. Richter, G. Wang, G. Prieto, T. Kasama, C.
Weidenthaler, H.-J. Bongard, S. Kegnæs, A. Fürstner, F. Schüth,
Angew. Chem. Int. Ed. 2014, 53, 8648.
Recently, olefin migration of internal alkenes was observed during a
nickel nanoparticle-catalyzed alkene hydrosilylation, however, for
terminal olefins only hydrosilylation products was obtained. I. Buslov, F.
Song, X. Hu, Angew. Chem. Int. Ed. 2016, 55, 12295.
[10] For recent reviews, see: a) J. Masa, W. Xia, M. Muhler, W. Schuhmann,
Angew. Chem. Int. Ed. 2015, 54, 10102; b) Q. Wei, X. Tong, G. Zhang,
J. Qiao, Q. Gong, S. Sun, Catalysis 2015, 5, 1574; c) L. He, F. Weniger,
H. Neumann, M. Beller, Angew. Chem. Int. Ed. 2016, 55, 12582.
[11] For examples, see: a) R. V. Jagadeesh, A.-E. Surkus, H. Junge, M.-M.
Pohl, J. Radnik, J. Rabeah, H. Huan, V. Schünemann, A. Brückner, M.
Beller, Science 2013, 342, 1073; b) R. V. Jagadeesh, H. Junge, M.-M.
Pohl, J. Radnik, A. Brückner, M. Beller, J. Am. Chem. Soc. 2013, 135,
10776; c) Z. Li, J. Liu, C. Xia, F. Li, ACS Catal. 2013, 3, 2440; d) P.
Zhang, Y. Gong, H. Li, Z. Chen, Y. Wang, Nat. Commun. 2013, 4,
1593; e) A. V. Iosub, S. S. Stahl, Org. Lett. 2015, 17, 4404; f) R. V.
Jagadeesh, T. Stemmler, A.-E. Surkus, H. Junge, K. Junge, M. Beller,
Nat. Protoc. 2015, 10, 548. g) M. Zacharska, O. Y. Podyacheva, L. S.
Kibis, A. I. Boronin, B. V. Senkovskiy, E. Y. Gerasimov, O. P. Taran, A.
B. Ayusheev, V. N. Parmon, J. J. Leahy, D: A. Bulushev,
ChemCatChem 2015, 7, 2910; h) R. V. Jagadeesh, T. Stemmler, A.-E.
Surkus, M. Bauer, M.-M. Pohl, J. Radnik, K. Junge, H. Junge, A.
Brückner, M. Beller, Nat. Protoc. 2015, 10, 916.
Acknowledgements
The authors gratefully acknowledge the support of the Danish
Council for Independent Research, Grant No. 12-127580 and
6111-00237, the support of the Lundbeck Foundation
(Lundbeckfonden), Grant No. R141-2013-13244 and the support
from Villum Fonden research grant (13158).
Keywords: Olefin migration • nanoparticles • N-doped carbon •
[12] W. Xia, Catal. Sci. Technol. 2016, 6, 630.
[13] a) F. A. Westerhaus, R. V. Jagadeesh, G. Wienhöfer, M.-M. Pohl, J.
Radnik, A.-E. Surkus, J. Rabeah, K. Junge, H. Junge, M. Nielsen, A.
Brückner, M. Beller, Nature. Chem. 2013, 5, 537; b) W. Zhong, H. Liu,
C. Bai, S. Liao, Y. Li, ACS Catal. 2015, 5, 1850; c) J. Deng, P. Ren, D.
Deng, X. Bao, Angew. Chem. Int. Ed. 2015, 54, 2100.
base metals • catalysis
[1]
[2]
[3]
M. Hassam, A. Taher, G. E. Arnoth, I. R. Green, W. L. A. van Otterlo,
Chem. Rev. 2015, 115, 5462.
P. M. Dewick, Medicinal Natural Products: A Biosynthetic Approach,
Wiley: Chippenham, 2009; pp. 156-159.
[14] See supporting information for details.
[15] The catalyst can be stored at ambient conditions under air for at least
three weeks without loss of activity.
For examples of allylation of arenes, see: a) C. C. Price, Org. React.
1946, 3, 1; b) M. Kodomari, S. Nawa, T. Miyoshi, J. Chem. Soc. Chem.
Commun. 1995, 1895; c) M. A. Kacprzynski, T. L. May, S. A. Kazane, A.
H. Hoveyda, Angew. Chem. Int. Ed. 2007, 46, 4554; d) J. Norinder, K.
Bogar, L Kanupp, J.-E. Bäckvall, Org. Lett. 2007, 9, 5095; e) D. Polet, X.
Rathgeb, C. A. Falciola, J. B. Langlois, S. El Hajjaji, A. Alexakis, Chem.
Eur. J. 2009, 15, 1205; f) K. B. Selim, Y. Matsumoto, K.-I. Yamada, K.
Tamioka, Angew. Chem. Int. Ed. 2009, 48, 8733; g) A. M. Whittaker, R.
P. Rucker, G. Lalic, Org. Lett. 2010, 12, 3216; h) M. Niggemann, M. J.
Meel, Angew. Chem. Int. Ed. 2010, 49, 3684; i) T. Yao, K. Hirano, T.
Satoh, M. Miura, Angew. Chem. Int. Ed. 2011, 123, 3046.
[16] It has previously been demonstrated that Raney nickel is
a poor
catalyst for olefin migration of allylbenzene: J. Prasad, C. N. Pillai, J.
Catal. 1984, 88, 418.
[17] When olefin migration of allylbenzene was performed in the presence of
0.3 equivalents cis-stilbene, 11% isomerization to trans-stilbene was
observed. Under the reaction conditions, but in the absence of the
catalyst, <1% isomerization of cis-stilbene occurred.
[18] Olefin migration/isomerization using homogeneous cobalt catalysis has
been proposed to proceed through a radical pathway. Consistent with
this hypothesis, our standard reaction was completely suppressed by
This article is protected by copyright. All rights reserved.