R. Hoareau, P. J. H. Scott / Tetrahedron Letters 51 (2010) 3353–3355
3355
Neurol. Belg. 2002, 102, 127–135; (b) Hashimoto, K.; Inoue, O.; Suzuki, K.;
Yamasaki, T.; Kojima, M. Ann. Nucl. Med. 1989, 3, 63–71.
5. James, M. L.; Fulton, R. R.; Henderson, D. J.; Eberl, S.; Meikle, S. R.; Thomson, S.;
Allan, R. D.; Dolle, F.; Fulham, M. J.; Kassiou, M. Bioorg. Med. Chem. 2005, 13,
6188–6194.
resulted in loweryields (50%)of 5 from this couplingreaction. There-
fore, it is preferential to prepare 4 in house (>90% purity) to avoid
purification, by flash chromatography, of intermediate 5.
With nitropyridine 5 in hand, it was subjected to Yoon’s proce-
dure,12 on gram scale, by dissolving in methanol (50 mL) and treat-
ing with palladium on carbon (0.05 equiv) and decaborane
(0.3 equiv).15 Refluxing for 30 min was sufficient to reduce the ni-
tro group to the corresponding amine and after this time the reac-
tion was cooled to room temperature. Salicylaldehyde (1.2 equiv)
and additional decaborane (0.3 equiv) were added and the reaction
was stirred for a further 2 h at rt. After this time, the reaction was
concentrated in vacuo and methanol (20 mL) was added to the
concentrate to triturate 7 as a white powder (25% yield, >95% pur-
ity by 1H NMR). The somewhat low yield was attributed to loss of
material during purification by trituration, but the loss was
deemed acceptable given the simplicity of the purification. How-
ever, due to the toxicity of decaborane,14 we wished to confirm
that, whilst convenient, trituration was indeed also suitable for re-
moval of residual decaborane from product 7. The proton NMR
spectrum of decaborane is complex due to the caged structure
and both proton–proton and proton–boron coupling interactions.16
Nevertheless, the NMR spectrum for intermediate 7 revealed no
signals attributable to decaborane, confirming residual levels at
least below the NMR limit of detection.
Finally, it was necessary to acetylate 7 to provide desmethyl-
PBR28 1. Initially, we followed Zheng’s room temperature proce-
dure8c (AcCl (2.2 equiv), DMAP (2.5 equiv), DCM, rt) but this reaction
turned out to be poor in our hands and we only acetylated the phenol
function. Therefore, we employed Pike’s acetylation procedure8a
(refluxing mixture of acetic acid and acetic anhydride) to provide
the O- and N-diacetylated species. Subsequent treatment with 5%
sodium hydroxide in methanol at rt was sufficient to deprotect the
phenol, whilst leaving the amide intact, and provided [11C]PBR28
precursor 1 (50% from 7, >95% purity by 1H NMR).17
6. (a) Zhang, M. R.; Kida, T.; Noguchi, J.; Furutsuka, K.; Maeda, J.; Suhara, T.;
Suzuki, K. Nucl. Med. Biol. 2003, 30, 513–519; (b) Maeda, J.; Suhara, T.; Zhang,
M. R.; Okauchi, T.; Yasuno, F.; Ikoma, Y.; Inaji, M.; Nagai, Y.; Takano, A.;
Obayashi, S.; Suzuki, K. Synapse 2004, 52, 283; (c) Probst, K. C.; Izquierdo, D.;
Bird, J. L. E.; Brichard, L.; Franck, D.; Davies, J. R.; Fryer, T. D.; Richards, H. K.;
Clark, J. C.; Davenport, A. P.; Weissberg, P. L.; Warburton, E. A. Nucl. Med. Biol.
2007, 34, 439–446; (d) Ikomo, Y.; Yasuno, F.; Iti, H.; Suhara, T.; Ota, M.; Toyama,
H.; Fujimara, Y.; Takano, A.; Maeda, J.; Zhang, M. R.; Nakao, R.; Suzuki, K. J.
Cereb. Blood Flow Metab. 2007, 27, 173–184.
7. (a) Zhang, M. R.; Maeda, J.; Furutsuka, K.; Yoshida, Y.; Ogawa, M.; Suhara, T.;
Suzuki, K. Bioorg. Med. Chem. Lett. 2003, 13, 201–204; (b) Zhang, M.-R.; Maeda,
J.; Ogawa, M.; Noguchi, J.; Ito, J.; Yoshida, Y.; Okauchi, T.; Obayashi, S.; Suhara,
T.; Suzuki, K. J. Med. Chem. 2004, 47, 2228–2235; (c) Fujimara, Y.; Ikoma, Y.;
Yasuno, F.; Suhara, T.; Ota, M.; Matsumoto, R.; Nozaki, S.; Takano, A.; Kosaka, J.;
Zhang, M.-R.; Nakao, R.; Suzuki, K.; Kato, N.; Ito, H. J. Nucl. Med. 2006, 47, 43–50.
8. (a) Briard, E.; Zoghbi, S. S.; Imaizumi, M.; Gourley, J. P.; Shetty, H. U.; Hong, J.;
Cropley, V.; Fujita, M.; Innis, R. B.; Pike, V. W. J. Med. Chem. 2008, 51, 17–30; (b)
Imaizumi, M.; Kim, H.-J.; Zoghbi, S. S.; Briard, E.; Hong, J.; Musachio, J. L.;
Ruetzler, C.; Chuang, D.-M.; Pike, V. W.; Innis, R. B.; Fujita, M. Neurosci. Lett.
2007, 411, 200–205; (c) Wang, M.; Yoder, K. K.; Gao, M.; Mock, B. H.; Xu, X.-M.;
Saykin, A. J.; Hutchins, G. D.; Zheng, Q.-H. Bioorg. Med. Chem. Lett. 2009, 19,
5636–5639; (d) Yasuno, F.; Ota, M.; Kosaka, J.; Ito, H.; Higuchi, M.; Doronbekov,
T. K.; Nozaki, S.; Fujimura, Y.; Koeda, M.; Asada, T.; Suhara, T. Biol. Psychiatry
2008, 64, 835–841; (e) Fujimura, Y.; Ikoma, Y.; Yasuno, F.; Suhara, T.; Ota, M.;
Matsumoto, R.; Nozaki, S.; Takano, A.; Kosaka, J.; Zhang, M. R.; Nakao, R.;
Suzuki, K.; Kato, N.; Ito, H. J. Nucl. Med. 2006, 47, 43–50.
9. Brown, A. K.; Fujita, M.; Fujimura, Y.; Liow, J.-S.; Stabin, M.; Ryu, Y. H.;
Imaizumi, M.; Hong, J.; Pike, V. W.; Innis, R. B. J. Nucl. Med. 2007, 48, 2072–
2079.
10. (a) Scott, P. J. H. Angew. Chem., Int. Ed. 2009, 48, 6001–6004; (b) Miller, P. W.;
Long, N. J.; Vilar, R.; Gee, A. D. Angew. Chem., Int. Ed. 2008, 47, 8998–9033.
11. (a) El-Makawy, A. I.; Girgis, S. M.; Khalil, W. K. B. Mutat. Res. 2008, 657, 105–
110; (b) Silva, C. R.; Oliveira, M. B.; Melo, S. F.; Dantas, F. J.; de Mattos, J. C.;
Bezerra, R. J.; Caldeira-de-Araujo, A.; Duatti, A.; Bernardo-Filho, M. Brain Res.
Bull. 2002, 59, 213–216; (c) Der Muelen, H. C.; Feron, V. J.; Til, H. P. Pathol. Eur.
1974, 9, 185–192.
12. Bae, J. W.; Cho, Y. J.; Lee, S. H.; Yoon, C.-O. M.; Yoon, C. M. Chem. Commun. 2000,
1857–1858.
13. Felpin, F.-X.; Ayad, T.; Mitra, S. Eur. J. Org. Chem. 2006, 2679–2690.
14. Naeger, L. L.; Leibman, K. C. Toxicol. Appl. Pharmacol. 1972, 22, 517–527.
15. Typical experimental procedure using the decaborane-Pd/C system: Under
argon, Pd/C 10% (307.5 mg, 0.29 mmol, 0.06 equiv) was added to a solution of 5
(1.04 g, 4.83 mmol) in MeOH (50 mL). Then, a solution of B10H14 (177 mg,
1.45 mmol, 0.3 equiv) in MeOH (5 mL) was added. The heterogeneous solution
In conclusion,
a simplified synthesis of N-[(2-hydroxy-
phenyl)methyl]-N-(4-phenoxy-3-pyridinyl) acetamide (1), the pre-
cursor for [11C]PBR28, has been developed, employing a one-pot
reduction–reductive amination procedure. This synthetic strategy
is operationally simpler than other reported two-pot procedures
as it eliminates the need to use toxic tin(II) chloride, refluxing
hydrochloric acid, and Dean–Stark reductive amination conditions.
Clinical research with [11C]PBR28 is currently underway and will
be reported in due course.
was refluxed for 30 min and then cooled back to rt.
A solution of
salicylaldehyde (682 mg, 5.58 mmol, 1.2 equiv) in MeOH (5 mL) followed by
an additional solution of B10H14 (180 mg, 1.47 mmol, 0.3 equiv) in MeOH
(5 mL) were added to the reaction mixture. The resulting green solution was
then stirred at rt for 2 h. After this time, the reaction mixture was filtrated off
over a Celite pad, washed with MeOH (200 mL), and concentrated in vacuo. The
yellow crude solid was triturated with MeOH (20 mL) to give compound 7 as a
white solid (358 mg, 25%, >95% purity by 1H NMR). 1H NMR (DMSO-d6,
300 MHz): d 9.63 (s, 1H), 7.85 (s, 1H), 7.70 (d, J = 5.1 Hz, 1H), 7.46 (t, J = 7.5 Hz,
2H), 7.26–7.03 (m, 5H), 6.84–6.71 (m, 2H), 6.53 (d, J = 5.1 Hz, 1H), 5.95 (t,
J = 6.1 Hz, 1H), 4.34 (d, J = 6.1 Hz, 2H). HRMS calcd for C18H17N2O2 (M+H+),
293.1290; found, 293.1287.
Acknowledgment
The University of Michigan Cyclotron and Radiochemistry
group gratefully acknowledge funding for this research from the
Office of Biological and Environmental Research (BER) of the Office
of Science (SC), US Department of Energy (DE-FG02-08ER64645).
16. Decaborane: 1H NMR (CDCl3, 500 MHz): d 2.17–4.69 (m, 10H), À0.11 to 1.46
(m, 4H).
17. Acylation procedure: under argon,
a solution of compound 7 (355 mg,
1.21 mmol), DMAP (56 mg, 0.46 mmol, 0.4 equiv), and Ac2O (265 mg,
2.60 mmol, 2.1 equiv) in acetic acid (3 mL) was heated at 130 °C for 2 h.
After cooling back to rt, the reaction mixture was diluted in water (50 mL) and
extracted with ethyl acetate (150 mL). The collected organic layers were
washed with aq satd NaHCO3 (25 mL), brine (25 mL), dried over MgSO4, and
concentrated in vacuo. The crude colorless oil was then re-dissolved in a
solution of NaOH in MeOH (5% w/v, 6 mL) and stirred at rt for 5 h. After
removing the volatiles in vacuo, the residue was diluted in an aq solution of
HCl (pH 5, 50 mL) and extracted with ethyl acetate (150 mL). The combined
organic layers were washed with aq satd NaHCO3 (25 mL), brine (25 mL), dried
over MgSO4, and concentrated in vacuo. The crude white solid was purified by
flash chromatography (hexane/ethyl acetate 1/2.5) to give desmethyl-PBR28
(1) as a white solid (203 mg, 50%, >95% purity by 1H NMR). 1H NMR (CDCl3,
500 MHz): d 9.28 (s, 1H), 8.41 (d, J = 3.4 Hz, 1H), 8.31 (s, 1H), 7.39 (t, J = 7.9 Hz,
2H), 7.28–7.23 (m, 2H), 6.94 (d, J = 8.1 Hz, 1H), 6.77 (d, J = 8.1 Hz, 2H), 6.72 (t,
J = 7.9 Hz, 1H), 6.67–6.62 (m, 2H), 4.82 (s, 2H), 2.02 (s, 3H). HRMS calcd for
C20H18N2NaO3 (M+Na+), 357.1215; found, 357.1200.
References and notes
1. Ametamey, S. M.; Honer, M.; Schubiger, P. A. Chem. Rev. 2008, 108, 1501–1516.
2. Bergström, M.; Hargreaves, R. J.; Burns, H. D.; Goldberg, M. R.; Sciberras, D.;
Reines, S. A.; Petty, K. J.; Ögren, M.; Antoni, G.; Långström, B.; Eskola, O.;
Scheinin, M.; Solin, O.; Majumdar, A. K.; Constanzer, M. L.; Battisti, W. P.;
Bradstreet, T. E.; Gargano, C.; Hietala, J. Biol. Psychiatry 2004, 55, 1007–1012.
3. Recent review of progress in PBR pathology and imaging: (a) Venneti, S.;
Lopresti, B. J.; Wiley, C. A. Prog. Neurobiol. 2006, 80, 308–322; (b) Papadopoulos,
V.; Baraldi, M.; Guilarte, T. R.; Knudsen, T. B.; Lacapere, J.-J.; Lindemann, P.;
Norenberg, M. D.; Nutt, D.; Weizman, A.; Zhang, M.-R.; Gavish, M. Trends
Pharmacol. Sci. 2006, 27, 402–409.
4. (a) Debruyne, J. C.; Van Laere, K. J.; Versijpt, J.; De Vos, F.; Eng, J. K.; Strijckmans,
K.; Santens, P.; Achten, E.; Slegers, G.; Korf, J.; Dierckx, R. A.; De Reuck, J. L. Acta