Angewandte Chemie International Edition
10.1002/anie.202108454
COMMUNICATION
H
O
Ph
O
O
[1]
Reviews on the syntheses, properties and reactivities of epoxide
derivatives; a) J. Aube in Comprehensive Organic Synthesis Vol. 1 (Eds.:
B. M. Trost, I. Fleming), Pergamon Press, Oxford, 1991, pp. 819-842; b)
H. Pellissier, A. Lattanzi, R. Dalpozzo, Asymmetric Epoxidation in
Asymmetric Synthesis of Three-Membered Rings, Wiley-VCH, 2017, pp.
TFA, EtOH
reflux, 8 h
H
Ph
O
X
Ph
CO t-Bu
2
OH
Ph
X
6
6
a X = H, 95%, 99% ee
b X = 2-thienyl, 96%, 99% ee
7a X = H, 90%, 99% ee
7b X = 2-thienyl, 90%, 99% ee
379-514; c) C. Wang, L. Luo, H. Yamamoto, Acc. Chem. Res. 2016, 49,
NaBH , EtOH
rt, 10 min
or
193-204; d) B. S. Lane, K. Burgess, Chem. Rev. 2003, 103, 2457-2473.
For a review, see; a) C. Lauret, Tetrahedron Asymmetry 2001, 12, 2359-
4
Zn, NH Cl
O HO CO t-Bu
[2]
4
2
2383; b) M. J. Porter, J. Skidmore, Chem. Commun. 2000, 1215-1225;
2-thienylMgBr
Ph
Ph
EtOH, reflux, 4 h
c) D. Díez, M. G. Núñez, A. B. Antón, P. García, R.F. Moro, N.M. Garrido,
I. S. Marcos, P. Basabe, J. G. Urones, Curr. Org. Synth. 2005, 5, 186-
216.
THF, -40 °C
8
95%, 99% ee
H
O
Ph
[
3]
4]
a) J.-L. Giner, W. V. Ferris, J. J. Mullins, J. Org. Chem. 2002, 67, 4856-
4859; b) G. Righi, G. Rumboldt, J. Org. Chem. 1996, 61, 3557-3560.
a) T. Ooi, D. Ohara, M. Tamura, K. Maruoka, J. Am. Chem. Soc. 2004,
126, 6844-6845; b) H. Kakei, R. Tsuji, T. Ohshima, M. Shibasaki, J. Am.
Chem. Soc. 2005, 127, 8962-8963; c) C. M. Reisinger, X. Wang, B. List,
Angew. Chem. Int. Ed. 2008, 47, 8112-8115; d) A. Lee, C. M. Reisinger,
B. List, Adv. Synth. Catal. 2012, 354, 1701-1706.
H
O
Ph
Ph
CO t-Bu
mCPBA, CH Cl2
2
2
O
[
PhO
CO t-Bu
reflux, 16 h
2
2a, 99% ee
O
9
7
0%, 99% ee
Scheme 2. Derivatizations of trisubstituted α,β-epoxy esters.
[5]
a) O. Lifchits, C. M. Reisinger, B. List, J. Am. Chem. Soc. 2010, 132,
10227-10229; b) Y. Nishikawa, H. Yamamoto, J. Am. Chem. Soc. 2011,
133, 8432-8435; c) H. Kawai, S. Okusu, Z. Yuan, E. Tokunaga, A.
To demonstrate the synthetic utility of these products, further
chemical transformations of the resulting optically active α,β-
epoxy ester 2a were conducted and illustrated in Scheme 2.
Yamano, M. Shiro, N. Chibata, Angew. Chem. Int. Ed. 2013, 52, 2221-
2225; d) H. Zhang, Q. Yao, L. Lin, C. Xu, X. Liu, X. Feng, Adv. Synth.
Catal. 2017, 359, 3454-3459; e) C. De Fusco, C. Tedesco, A. Lattanzi,
J. Org. Chem. 2011, 76, 676-679; f) L. Luo, H. Yamamoto, Eur. J. Org.
Chem. 2014, 7803-7805.
4
Chelation-controlled reduction with NaBH proceeded effectively
to afford a single diastereomeric epoxy alcohol 6a in 95% yield
without loss of enantiopurity.[21] Subsequent cyclization of alcohol
[
6]
a) M. S. Newman, B. J. Magerlein, The Darzens Glycidic Ester
Condensation in Organic Reactions, Wiley, New York, 2011, pp. 413-440;
b) Z. Wang, Darzens condensation in Comprehensive Organic Name
Reactions and Reagents, Wiley, 2009, pp. 841-845; c) J. M. de los
Santos, A. M. Ochoa de Retana, E. Martínez de Marigorta, J. Vicario, F.
Palacios, ChemCatChem 2018, 10, 5092−5114; d) V. K. Aggarwal, D. M.
Badine, V. A. Moorthie, Asymmetric Synthesis of Epoxides and
Aziridines from Aldehydes and Imines In Aziridines and Epoxides in
Organic Synthesis (Eds.: A. K. Yudin), Wiley-VCH, Weinheim, 2006, pp.
6
a with trifluoroacetic acid gave optically active α,β-epoxy-γ-
butyrolactone 7a.[22],[23] Grignard addition with 2-thienyl
magnesium bromide also successfully produced single
a
diastereomeric epoxy tert-alcohol 6b in 96% yield and acid
mediated cyclization gave 4-disubstituted epoxy-γ-butyrolactone
7
b in 90% yield with 99% ee. This intriguing structure is found in
numerous naturally occurring biologically active compounds, such
as Clavilactones,[24] Coralloidolides,[25] and Briaranolides.[26]
1
-35.
a) V. K. Aggarwal, G. Hynd, W. Picoul, J.-L. Vasse, J. Am. Chem. Soc.
002, 124, 9964-9965; b) Y. Liu, B. A. Provencher, K. J. Bartelson, L.
[7]
[8]
[9]
4
Additionally, reduction of the epoxide with Zn and, NH Cl led to
2
the highly enantioenriched tertiary β-hydroxy ketone 8 in 95%
yield. [27] Baeyer-Viliger oxidation of the epoxide successfully
provided epoxide 9 bearing two different ester groups.
Deng, Chem. Sci. 2011, 2, 1301-1304; c) V. Ashokkumar, A. Siva, R. R.
Chidambaram, Chem. Commun. 2017, 53, 10926-10929; d) S. Arai, Y.
Shirai, T. Ishida, T. Shioiri, Tetrahedron 1991, 55, 6375-6386; e) D. P.
Hahajan, H. M. Godbole, G. P. Shngh, G. G. Shenoy, J. Chem. Sci. 2019,
In summary, the first case of highly enantiocontrolled catalytic
Darzens-type epoxidation with a diazoester was successfully
developed. This highly enantio- and diastereocontrolled synthetic
method provides optically active trisubstituted α,β-epoxy esters in
high yields. The resulting densely functionalized esters can be
easily converted to optically active α,β-epoxy-γ-butyrolactone and
tertiary β-hydroxy ketone without loss of optical purity. The
absolute configuration of the product was predicted by the
transition state model in Figure 2. We believe that the resulting
trisubstituted α,β-Z-epoxy esters could be highly valuable and
versatile intermediates for further transformations.
131, 22.
a) J.-F. Briere, P. Metzner, T. Toru, C. Bolm, Synthesis and Use of Chiral
Sulfur Ylides in Organosulfur Chemistry in Asymmetric; Wiley-VCH, 2008,
pp. 179– 208; b) M. M. Heravi, S. Asadi, N. Nazari, M. Lashkariani, Curr.
Org. Synth. 2016, 13, 308-333; c) E. M. McGarrigle, E. L. Myers, O. Illa,
M. A. Shaw, S. L. Riches, V. K. Aggarwal, Chem. Rev. 2007, 107, 5841-
5883; d) V. K. Aggarwal, C. L. Winn, Acc. Chem. Res. 2004, 37, 611-620;
e) A.-H. Li, L.-X. Dai, Chem. Rev. 1997, 97, 2341-2372.
a) V. K. Aggarwal, I. Bae, H.-Y. Lee, J. Richardson, D. T. Willians, Angew.
Chem. Int. Ed. 2003, 42, 3274-3278; b) Y. Arroyo, M. A. Sanz-Tejedor,
J. L. G. Ruano, Org. Lett. 2008, 10, 11, 2151-2154; c) O, Illa. M. Arshad,
A. Ros, E. M. McGarrigle, V. K. Aggarwal, J. Am. Chem. Soc. 2010, 132,
1828-1830; d) O. Illa, M. Namutebi, C. Saha, M. Ostovar, C. C. Chen, M.
F. Haddow, S. Nocquet-Thibault, M. Lusi, E. M. McGarrigle, V. K.
Aggarwal, J. Am. Chem. Soc. 2013, 135, 11951-119661; e) T. Sone, A.
Yamaguchi, S. Matsunaga, M. Shibasaki, J. Am. Chem. Soc. 2008, 130,
Acknowledgements
10078-10079; f) V. K. Aggarwal, J. Richardson, Chem. Commun. 2003,
2
644-2651.
This work was supported by National Research Foundation of
Korea (NRF) grants funded by the Korean government (MSIP)
[
10] a) A. K. Gupta, X. Yin, M. Mukherjee, A. A. Desai, A. Mohammadlou, K.
Jurewicz, W. D. Wulff, Angew. Chem. Int. Ed. 2019, 58, 3361-3367; b) L.
He, W.-J. Liu, L. Ren, T. Lei, L.-Z. Gong, Adv. Synth. Catal. 2010, 352,
(
NRF-2019R1A4A2001440 and No. 2019R1A2C2087018).
1123-1127; c) W.-J. Liu, B.-D. Lv, L.-Z. Gong, Angew. Chem. Int. Ed.
2009, 48, 6503-6506; d) G.-L. Chal, J.-W. Han, H. N. C. Wong, Synthesis
Keywords: enantioselectivity • trisubstituted epoxide • Lewis
2016, 48, A-G; e) G. Liu, D. Zhang, J. Li, G. Xu, J. Sun, Org. Biomol.
Chem. 2013, 11, 900-904.
acid • diazoester • Darzens reaction
4
This article is protected by copyright. All rights reserved.