5
addition of ConA, as compared to 1000 a.u. obtained with the
Acknowledgments
second generation dendrimer 2b. 1b display a dynamic linear
-
7
range from 0-350×10 M concentration of ConA compared to
RD is thankful to IISER Kolkata for postdoctoral fellowship.
SERB, DST, India is gratefully acknowledged for funding
through grant SB/S1/OC-48/2013 to BM. We acknowledge the
help of Dr. Subhajit Bandyopadhyay for binding constant
determination and Mr. Atiur Rahaman for fluorescence
measurements.
-7
that of only 0-50×10 M for 2b. It is clear that the first generation
dendrimer 1b provides superior aggregation with ConA,
displaying a greater change in emission along a larger linear
range. The quicker saturation of the second generation dendrimer
2
b may be explained by the much higher peripheral carbohydrate
density that sterically hinders the possibility of interaction with
incoming ConA. The obtained observations are also in sync with
the various studies done in the past to state that higher number of
epitopes doesn’t necessary indicate enhanced binding potency
towards proteins. The titration data of the fluorescence intensity
against the concentration of ConA displayed non-linearity
indicating some degree of cooperativity in the binding process.
Therefore, the non-linear equation (Equation S1, ESI) was used
References and notes
1.
(a) Varki, A. Glycobiology 1993, 3, 97-130. (b) Karlsson, K. A.
Curr. Opin. Struct. Biol. 1995, 5, 622-635. (c) Sacchettini, J. C.;
Baum, L. G.; Brewer, C. F. Biochemistry 2001, 40, 3009-3015.
Lis, H., Sharon, N. Chem. Rev. 1998, 98, 637-634.
17
2
3
4
.
.
.
Lee, Y. C.; Lee, R. T. Acc. Chem. Res. 1995, 28, 321-327.
(a) Brandehorst, H. M., Kooij, R.; Salminen, A.; Jongeneel, L. H.;
Arnusch, C. J., Liskamp, R. M. J.; Finne, J.; Pieters, R. J. Org.
Biomol. Chem. 2008, 6, 1425–1434. (b) Pukin, A. V.;
Brandehorst, H. M.; Sisu, C.; Weijers, C. A. G. M.; Gilbert, M.;
Liskamp, R. M. J.; Visser, G. M.; Zuilhof, H.; Pieters, R. J.
ChemBioChem 2007, 8, 1500–1503.
to fit the titration data to incorporate the factor for the
st
cooperative behavior. The binding constant logK
b
with 1
generation dendrimer 1b was found to be 5.46 with the value of
nd
n=1.30. The same with the 2 generation dendrimer 2b found to
be 5.91 with the value of n=1.82 (Figure S4 and S5). Further, to
judge the specificity of the mannose modified carbohydrate
dendrimer towards the MBL ConA, first generation dendrimer
similar to that of 1b was synthesized with galactose in the
periphery (compound F, Scheme S1, ESI). When it was
subjected to titration with ConA, no enhancement of fluorescence
was observed suggesting no binding with ConA (Figure 5).
Thus, the specific nature of the carbohydrate-lectin interaction is
established.
5
.
(a) Kikkeri, R.; Kamena, F.; Gupta, T.; Hossain, L. H.;
Boonyarattanakalin, S.; Gorodyska, G.; Beurer, E.; Coullerez, G.,
Textor, M.; Seeberger, P. H. Langmuir 2010, 26 , 1520-1523. (b)
Kikkeri, R.; Rubio, I. G.; Seeberger, P. H. Chem. Commun. 2009,
2
35-237. (c) Khan, S. A.; Adak, A.; Murthy, R. V.; Kikkeri, R.
Inorg. Chim. Acta 2014, 409, 26-33. (d) Kikkeri, R.; Grunstein,
D.; Seeberger, P. H. J. Am. Chem. Soc. 2010, 132, 10230-10232.
(a) Hao, E.; Jensen, T. J.; Vicente, M. G. H.; J. Porphyrins
Phthalocyanines 2009, 13, 51−59. (b) Garcia, G.; Hammerer, F.;
Achelle, F. P. S.; Teulade-Fichou, M.-P.; Maillard, P. Bioorg.
Med. Chem. 2013, 21, 153−165. (c) Garcia, G.; Naud-Martin, D.;
Carrez, D.; Croisy, A.; Maillard, P. Tetrahedron 2011, 67, 4924-
6.
4
932.
(a) Kushwaha, D.; Tiwari, V. K. J. Org. Chem.2013, 78,
184−8190. (b) Makky, A.; Michel, J. P.; Kasselouril, A.; Briand,
7
8
.
.
8
E.; Maillard, Ph.; Rosilio, V. Langmuir 2010, 26, 12761-12768.
(a) Figueiraa, F.; Pereiraa, P. M. R.; Silvaa, S.; Cavaleiroa, J. A.
S.; Toméa, J. P. C. Curr. Org. Synth. 2014, 11, 110-126. (b)
Nishiyama, N.; Stapert, H. R.; Zhang, G.; Takasu, D.; Jiang, D. -
L.; Nagano, T.; Aida, T.; Kataoka, K. Bioconjugate Chem.
2
003, 14, 58–66.
9
.
Okada, M.; Kishibe, Y.; Ide, K.; Takahashi, T.; Hasegawa, T. Int.
J. Carbohydr. Chem. 2009, 305276, 1−9.
1
1
0. Hardman, K. D.; Ainsworth, C. F. Biochemistry 1972, 11, 4910.
1. Chabre, Y. M.; Contino-Pepin, C.; Placide, V.; Shiao, T. C.; Roy,
R. J. Org. Chem. 2008, 73, 5602-5605.
1
2. Mandal, S.; Das, R.; Gupta, P.; Mukhopadhyay, B. Tetrahedron
Lett. 2012, 53, 3915-3918.
1
1
3. Liu, Q.; Tor, Y. Org. Lett. 2003, 5, 2571-2572.
Figure 5. Comparison of the interaction of ConA with dendrimers 1b, 2b and
4. Lindsey, J. S.; Schreiman, I. C.; Hsu, H. C.; Kearney, P. C.;
Marguerettez, A. M. J. Org. Chem. 1987, 52, 827-836.
5. Grin, M. A.; Lonin, I. S.; Makarov, A. I.; Lakhina, A. A.;
Toukach, F. V.; Kachala, V. V.; Orlova, A. V.; Mironov, A. F.
Mendeleev Commun. 2008, 18, 135−137.
the galactose modified dendrimer
1
Thus, in conclusion, we have developed the synthetic strategy
for the preparation of porphyrin carbohydrate dendrimer with
peripheral mannose ligands using the versatile ‘click reaction’
and established their application as sensors for the detection of
lectins. The lack of significant previous reports employing
porphyrin dendrimers for lectin sensing marks the novelty of our
reported work. The first generation dendrimer displayed greater
aggregation with the lectin ConA compared to that of the second
generation. This is clearly showing that the extent of
carbohydrate-lectin binding depends not only on the number of
peripheral carbohydrate ligands but also the ligand density that
dictates the number of available carbohydrates for effective
binding. This particular application of carbohydrate appended
porphyrin carbohydrate dendrimers for lectin-sensing may
provide the required opening for the further use of porphyrin
based dendrimers as lectin sensors.
16. Plater, M. J.; Aiken, S.; Bourhill, G. Tetrahedron 2002, 58, 2415-
422.
1
2
7. (a) Gargano, J. M.; Ngo, T.; Kim, J. Y.; Acheson, D. W. K.; Lees,
W. J. J. Am. Chem. Soc. 2001, 123, 12909–12910. (b) Wolfenden,
M. L.; Cloninger, M. J. J. Am. Chem. Soc. 2005, 127, 12168–
12169.
Supplementary Material
1
13
Experimental details and copies of the H C and selected
COSY and HSQC NMR spectra.