Organic Letters
Letter
REFERENCES
■
(
1) For a recent review on the generation and reaction of α-aminoalkyl
radicals, see: Nakajima, K.; Miyake, Y.; Nishibayashi, Y. Acc. Chem. Res.
016, 49, 1946−1956.
2)Armstrong, D. A.;Rauk, A.;Yu,D. J. Am. Chem. Soc.1993, 115,666−
73.
3) For conjugate additions from α-aminoalkyl radicals derived from
amino acids, see: (a) Noble, A.; MacMillan, D. W. C. J. Am. Chem. Soc.
2
(
6
(
2
014, 136, 11602−11605. (b) McCarver, S. J.; Qiao, J. X.; Carpenter, J.;
Borzilleri, R. M.; Poss, M. A.; Eastgate, M. D.; Miller, M.; MacMillan, D.
W. C. Angew. Chem., Int. Ed. 2017, 56, 728−732.
(4) For cross-coupling from α-aminoalkyl radicals derived from amino
acids, see: (a) Zuo, Z.; MacMillan, D. W. C. J. Am. Chem. Soc. 2014, 136,
5
257−5260. (b) Zuo, Z.; Ahneman, D. T.; Chu, L.; Terrett, J. A.; Doyle,
A. G.; MacMillan, D. W. C. Science 2014, 345, 437−440. (c) Zuo, Z.;
Cong, H.; Li, W.; Choi, J.; Fu, G. C.; MacMillan, D. W. C. J. Am. Chem.
Soc. 2016, 138, 1832−1835.
Figure 3. Proposed mechanism for benzylic fluorination.
(
5) For Minisci reactions from α-aminoalkyl radicals derived from
amino acids, see: (a) Cowden, C. J. Org. Lett. 2003, 5, 4497−4499.
b) Shore, D. G. M.; Wasik, K. A.; Lyssikatos, J. P.; Estrada, A. A.
Tetrahedron Lett. 2015, 56, 4063−4066.
(
product. As illustrated in Figure 2, amino acid coordination to
Ag(I) is required to yield a catalyst of the appropriate oxidation
potential for reaction with Selectfluor. Because the oxidation of
glycine by Ag(II) is believed to occur rapidly from a metal-bound
species, the concentration of Ag(II) in solution is expected to be
lowthroughout the reaction. This has implications for the lifetime
of the α-aminoalkyl radical which is expected to be readily
oxidized by Ag(II). Based on the mechanism shown in Figure 3,
Selectfluor and 1 are the strongest oxidants the α-aminoalkyl
radical is likely to encounter, allowing HAT to occur prior to
unwanted oxidation.
In conclusion, we have developed a new method for C−H
benzylic fluorination using unprotected amino acids as radical
precursors. Fluorination proceeds under mild conditions and is
effective for several electron-rich benzylic substrates. Amino acid
binding to the silver precatalyst is critical for lowering the
oxidation potential of Ag(I), allowing oxidative decarboxylation
under mildly oxidizing conditions. Additional work exploring the
precise role of the amino acid throughout the reaction is ongoing.
(6) (a) Schonberg, A.; Moubacher, R. Chem. Rev. 1952, 50, 261−277.
(
(
b) Zelechonok, Y.; Silverman, R. B. J. Org. Chem. 1992, 57, 5787−5790.
c) Rizzi, G. P. Food Rev. Int. 2008, 24, 416−435. (d) Nashalian, O.;
Yaylayan, V. A. J. Agric. Food Chem. 2014, 62, 8518−8523.
(7) Mai, D. N.; Baxter, R. D. Org. Lett. 2016, 18, 3738−3741.
(8)Luo,Y.-R. ComprehensiveHandbookofChemicalBondEnergies;CRC
Press: Boca Raton, FL, 2007.
(9) For examples of metal complexes as HAT agents, see: (a) Mayer, J.
M. Acc. Chem. Res. 2011, 44, 36−46. (b) Jin, J.; MacMillan, D. W. C.
Angew. Chem., Int. Ed. 2015, 54, 1565−1569. (c) Qvortrup, K.;Rankic, D.
A.; MacMillan, D. W. C. J. Am. Chem. Soc. 2014, 136, 626−629. (d) Ding,
W.; Lu, L. − Q.; Liu, J.; Liu, D.; Song, H. − T.; Xiao, W. − J. J. Org. Chem.
2
2
016, 81, 7237−7243. (e) Zhang, Y.; Teuscher, K. B.; Ji, H. Chem. Sci.
016, 7, 2111−2118.
(10) For a discussion of α-oxy radicals generated from carbon-centered
radicals via the Bergman cyclization, see: Togo, H. Advanced Free Radical
Reactions for Organic Synthesis; Elsevier: Amsterdam, 2004; p 235.
(
11) For arecent reviewon radical fluorination, see: Chatalova-Sazepin,
C.; Hemelaere, R.; Paquin, J.-F.; Sammis, G. Synthesis 2015, 47, 2554−
569.
12) For alternative methods of radical benzylic fluorinations using
Selectfluor, see: (a) Xia, J.-B.; Zhu, C.; Chen, C. J. Am. Chem. Soc. 2013,
2
(
ASSOCIATED CONTENT
■
1
35, 17494−17500. (b) Bloom, S.; Pitts, C. R.; Woltornist, R.; Griswold,
*
S
Supporting Information
A.; Holl, M. G.; Lectka, T. Org. Lett. 2013, 15, 1722−1724. (c) Bloom, S.;
McCann, M.; Lectka, T. Org. Lett. 2014, 16, 6338−6341. (d) Xu, P.; Guo,
S.; Wang, L.; Tang, P. Angew. Chem., Int. Ed. 2014, 53, 5955−5958.
(
1
13) Yin, F.; Wang, Z.; Li, Z.; Li, C. J. Am. Chem. Soc. 2012, 134, 10401−
0404.
Detailed experimental procedures, full characterization,
and copies of all spectra data (PDF)
(14) Patel, N. R.; Flowers, R. A. J. Org. Chem. 2015, 80, 5834−5841.
(15) (a) Pitts, C. R.; Bloom, S.; Woltornist, R.; Auvenshine, D. J.;
Ryzhkov, L. R.; Siegler, M. A.; Lectka, T. J. Am. Chem. Soc. 2014, 136,
9780−9791. (b) Pitts, C. R.; Ling, B.; Woltornist, R.; Liu, R.; Lectka, T. J.
Org. Chem. 2014, 79, 8895−8899.
AUTHOR INFORMATION
■
*
(
16) Liang, T.; Neumann, C. N.; Ritter, T. Angew. Chem., Int. Ed. 2013,
2, 8214−8264.
17) Substrate 10 maintained homogeneous conditions throughout all
5
(
ORCID
reaction progressions studied and was therefore chosen as a model
substrate for study via ReactIR.
Notes
(18) The reverse waveform of Ag(II) to Ag(I) was not observed under
these conditions due to the instability of aqueous Ag(II). For a detailed
explanation, see: Panizza, M.; Duo, I.; Michaud, P. A.; Cerisola, G.;
The authors declare no competing financial interest.
(
(
20) (a) Kumar, A.; Neta, P. J. Am. Chem. Soc. 1980, 102, 7284−7289.
ACKNOWLEDGMENTS
■
Financial support for this work was provided by the University of
California, Merced, The Hellman Foundation, and ACS-PRF No.
6225-DNI5. We are grateful to Dr. Luke Reed (UC Merced) for
(b) Rendosova, M.; Vargova, Z.; Kuchar, J.; Sabolova, D.; Levoca, S.;
Kudlacova, J.; Paulikova, H.; Hudecova, D.; Helebrandtova, V.; Almasi,
M.; Vilkova, M.; Dusek, M.; Bobalova, D. J. Inorg. Biochem. 2017, 168, 1−
5
1
2.
assistance with cyclic voltammetry.
D
Org. Lett. XXXX, XXX, XXX−XXX