J. Am. Chem. Soc. 2001, 123, 11075-11076
11075
Reversible Michael Reaction-Enzymatic Hydrolysis:
A New Variant of Dynamic Resolution
Scheme 1. Kinetic Enzymatic Resolution of (R/S)-1
†
‡
Jaan A. Pesti,* Jianguo Yin, Lin-hua Zhang, and
Luigi Anzalone
Chemical Process Research and DeVelopment
Bristol-Myers Squibb Co.
Chambers Works, Deepwater, New Jersey 08023
ReceiVed July 25, 2001
Enzymatic resolution of racemates into enantiomerically en-
riched compounds is a valuable and popular technique whose
value extends from the efficient preparation of complex com-
pounds to the preparative production of pure enantiomers.1,2
However, simple kinetic enzymatic resolutions are restricted to
a maximum yield of 50% per enantiomer. More useful is the
coupling of racemization with resolution, known as a dynamic
resolution.3 The benefits are two-fold: the need to remove or
recycle (after racemization) the undesired isomer is eliminated,
and if both enantiomers are substrates for the enzyme, enanti-
oselectivity remains constant due to continuous racemization of
Scheme 2. Dynamic Enzymatic Resolution Route to (R)-2
,4
the less reactive enantiomer.5,6 Since racemization conditions are
infrequently compatible with enzyme activity, dynamic resolutions
as sodium bicarbonate in 1:1 methanol:acetonitrile. In addition,
when 1 or 3b was stirred in methanol-d with catalytic methoxide,
only the side-chain methylene group was deuterated. The simplest
explanation for this observation, as well as for the facile
racemization,15 would be equilibrium between the enolate and
are uncommon.7,8 We report here the combination of enzymatic
9
resolution with a Michael-retro-Michael tandem to achieve
racemization, an unprecedented means to produce dynamic kinetic
resolution.
16
the enone/oxime anion structures, (see Scheme 1 and further
discussion in Supporting Information). Unfortunately, reaction
conditions permitting racemization and enzymatic resolution for
1 were incompatible, precluding a dynamic resolution and
requiring the recycling of (S)-1 for efficiency.
Single enantiomers of 3-aryl-4,5-dihydroisoxazol-5-ylacetic
acid derivatives are important cores of a series of non-peptide
10
platelet GPIIb/IIIa antagonists. This work in this area has led
to roxifiban,1
1,12
our leading candidate in development as therapy
Drueckhammer and co-workers have recently demonstrated that
thioesters enhance the acidity of the R-protons when compared
to corresponding oxoesters, sometimes increasing the racemization
rate sufficiently to lead to dynamic enzymatic resolution under
mild reaction conditions.1 As part of a study of new syntheses
of roxifiban, we discovered that the conversion of 1 to a wide
variety of thioesters 3 is efficient.19 In turn, some of these
thioesters, in the presence of phosphate buffer, amine, lipase PS-
for a range of cardiovascular disorders arising from undesired
platelet adhesion. The aryl isoxazoline 1 (Scheme 1) is resolved
by the lipase Pseudomonas cepacia (Amano PS-30) in pH 8
phosphate buffer to produce (R)-2 in 93% available yield and
7,18
13,14
9
5% enantiomeric excess (ee
p
).
Of note is that the unreactive
S isomer can be subsequently racemized by conditions as mild
*
Corresponding author. Current address: Bristol-Myers Squibb Co.,
Experimental Station, E336, Wilmington, DE 19880. Telephone: 302-695-
3
0, and surfactant, could be hydrolyzed to the acid (R)-2 in >90%
p
3
189. Fax: 302-695-3167.
†
Schering-Plough Research Institute, Union, New Jersey.
Gilead Sciences Inc., Foster City, California.
ee and yields as high as 89%, clear evidence of a dynamic
‡
resolution (Scheme 2).
(
1) Sheldon, R. A. Chirotechnology: Industrial Synthesis of Optically ActiVe
To optimize this unique resolution, we examined the reaction
of a set of common lipases upon various thioesters 3. Thioesters
are rarely used as substrates for enzymatic resolution, and the
best choice of R was not predictable.20 Of the enzymes and
thioesters screened, only the combination of PS-30 with the
Compounds; Marcel Dekker: New York, 1993; Chapter 7.
(
2) Wong, C.-H.; Whitesides, G. M. In Enzymes in Synthetic Organic
Chemistry; Baldwin, J. E., Magnus, P. D., Eds.; Tetrahedron Organic Chemistry
Series, Vol. 12; Pergamon Press: Oxford, 1994.
(
3) Caddick, S.; Jenkins, K. Chem. Soc. ReV. 1996, 25, 447-456.
(
4) Derivation of the kinetics of dynamic kinetic resolution: Kitamura, M.;
Tokunaga, M.; Noyori, R. J. Am. Chem. Soc. 1993, 115, 144-152.
(
(
5) Fulling, G.; Sih, C. J. J. Am. Chem. Soc. 1987, 109, 2845-2846.
6) Chen, C. S.; Fujimoto, Y.; Girdaukas, G.; Sih, C. J. J. Am. Chem. Soc.
(15) For examples of Michael-retro-Michael equilibria with the capacity
for racemization, see ref 9 and: (a) Shieh, W.-C.; Carlson, J. A. J. Org. Chem.
1994, 59, 5463-5465. (b) Reddy, S. M.; Walborshy, H. M. J. Org. Chem.
1986, 51, 2605-2607. (c) Yamagishi, M.; Tamada, Y.; Oszki, K.; Da-te, T.;
Okamura, K.; Suzuki, M.; Matsumoto, K. J. Org. Chem. 1992, 57, 1568-
1571. (d) Harrison, J. R.; O’Brien, P.; Porter, D. W.; Smith, N. M. J. Chem.
Soc., Perkin Trans. 1 1999, 3623-3631. (e) Slosse, P.; Hootele, C. Tetrahedron
1981, 37, 4287-4294. (f) Morley, C.; Knight, D. W.; Share, A. C. J. Chem.
Soc., Perkin Trans. 1 1994, 2903-2907. (g) Kiehlmann, E.; Li, E. P. M. J.
Nat. Prod. 1995, 58, 450-455. (h) Michael, J. P.; Gravestock, D. S. Afr. J.
Chem. 1998, 51, 146-157. (i) Foo, L. Y. Phytochemistry 1987, 26, 813-
817. (j) Kolarovic, A.; Berke sˇ , D.; Baran, P.; Povazanec, F. Tetrahedron Lett.
2001, 42, 2579-2582.
1
982, 104, 7294-7299.
(
7) Ward, R. S. Tetrahedron: Asymmetry 1995, 6, 1475-1490.
(
8) Noyori, R.; Tokunaga, M.; Kitamure, M. Bull. Chem. Soc. Jpn. 1995,
6
8, 36-56.
(
9) Ho, T.-L Tandem Organic Reactions; Wiley-Interscience: New York,
1
992; pp 40-41.
(
10) Wityak, J.; Sielecki, T. M.; Pinto, D. J.; Emmett, G.; Sze, J. Y.; Liu,
J.; Tobin, E.; Wang, S.; Jiang, B.; Ma, P.; Mousa, S. A.; Wexler, R. A.; Olson,
R. E. J. Med. Chem. 1997, 40, 50-60.
(
11) Xue, C.-B.; Mousa, S. A. Drugs Future 1998, 23, 707-711.
(
12) Xue, C.-B.; Wityak, J.; Sielecki, T. M.; Pinto, D. J.; Batt, D. G.; Cain,
G. A.; Sworin, M.; Rockwell, A. L.; Rodercik, J. J.; Wang, S.; Orwat, M. J.;
Frietze, W. E.; Bostrom, L. L.; Liu, J.; Higley, C. A.; Rankin, F. W.; Tobin,
A. E.; Emmett, G.; Lalka, G. K.; Sze, J. Y.; Di Meo, S. V.; Mousa, S. A.;
Thoolen, M. J.; Racanelli, A. L.; Hausner, E. A.; Reilly, T. M.; DeGrado, W.
F.; Wexler, R. R.; Olson, R. E. J. Med. Chem. 1997, 40, 2064-2084.
(16) Similar base-induced cleavages of tetrahydro-2-furanacetic acid deriva-
tives are known: (a) Brion, F. Tetrahedron Lett. 1982, 23, 5299-5302. (b)
Keay, B. A.; Rodrigo, R. Can. J. Chem. 1983, 61, 637-639. (c) Stille, J. R.;
Grubbs, R. H. J. Org. Chem. 1989, 54, 434-444.
(17) Tan, D. S.; Gunter, M. M.; Drueckhammer, D. G. J. Am. Chem. Soc.
1995, 117, 9093-9094.
(
13) Zhang, L.-H.; Anzalone, L.; Ma, P.; Kauffman, G. S.; Storace, L.;
Ward, R. Tetrahedron Lett. 1996, 37, 4455-4458.
14) Zhang, L.-H.; Chung, J. C.; Costello, T. D.; Valvis, I.; Ma, P.;
Kauffman, G. S.; Ward, R. J. Org. Chem. 1997, 62, 2466-2470.
(18) Um, P.-J.; Drueckhammer, D. G. J. Am. Chem. Soc. 1998, 120, 5605-
(
5610.
(19) Pesti, J. A.; Yin, J.; Chung, J. Synth. Commun. 1999, 2, 3811-3820.
1
0.1021/ja011811l CCC: $20.00 © 2001 American Chemical Society
Published on Web 10/11/2001