2764
A. González, G. Valencia / Tetrahedron: Asymmetry 9 (1998) 2761–2764
1
0. (a) Nefkens, G. H. L., Zwanenburg, B., Tetrahedron, 1983, 39, 2995–2998; (b) Baum, G., J. Organomet. Chem., 1970, 22,
69–271.
2
1
1. (a) Garrigues, B., Mulliez, M., Raharinirina, A., J. Organomet. Chem., 1986, 302, 153–158; (b) Garrigues, B., Mulliez,
M., J. Organomet. Chem., 1986, 314, 19–24; (c) Brown, H. C.; Gupta, A. K., J. Organomet. Chem., 1988, 341, 73–81; (d)
Robles, J., Pedroso, E., Grandas, A., Synthesis, 1993, 1261–1266; (e) Yang, L., Weber, A. E., Greenlee, W. J., Patchett, A.
A., Tetrahedron Lett., 1993, 7035–7038; (f) Acher, F., Azerad, R., Tetrahedron: Asymmetry, 1994, 5, 731–744; (g) Vedejs,
E.; Fields, S. C.; Lin, S.; Schrimpf, M. R., J. Org. Chem., 1995, 60, 3028–3034.
12. (a) Nozaki, K., Oshima, K., Utimoto, K., Tetrahedron Lett., 1988, 1041–1044; (b) Nozaki, K., Oshima, K., Utimoto, K.,
Tetrahedron, 1989, 45, 923–933; (c) Barton, D. H. R., Jang, D. O., Jaszberenyi, J. C., Tetrahedron Lett., 1990, 4681–4684;
(
d) Nozaki, K., Oshima, K., Utimoto, K., Bull. Chem. Soc. Jpn, 1991, 64, 403–409; (e) Baciocchi, E., Muraglia, E.,
Tetrahedron Lett., 1993, 5015–5018; (f) Czernecki, S., Ayadi, E., Xie, J., Tetrahedron Lett., 1996, 9193–9194; (g) Brown
H. C., Midland M. M., Angew. Chem. Int. Ed. Engl., 1972, 11, 692–700; (h) Ghosez, A., Giese, B., Zipse, H., Houben-Weil
E19a/Teil 2, 1989; chapter 9.2.3., pp. 753–765.
1
3. (a) Griller, D., Ingold, K. U., Patterson, L. K., Scaiano, J. C., Small, R. D., J. Am. Chem. Soc., 1979, 101, 3780–3785; (b)
Franz, J. A., Bushaw, B. A., Alnajjar, M. S., J. Am. Chem. Soc., 1989, 111, 268–275; (c) McPhee, D. J., Campredon, M.,
Lesage, M., Griller, D., J. Am. Chem. Soc., 1989, 111, 7563–7567.
14. Chen, W. J., Boehlert, C. C., Rider, K., Armstrong, R. N., Biochem. Biophys. Res. Commun., 1985, 128, 233–240.
3
15. Typical experiment: A 1 M solution of Et B in tetrahydrofuran (10.5 mL, 10.5 mmol) was added to L-Cys 1a (1.21
g, 10 mmol) in 20 mL of acetonitrile. The reaction mixture was stirred at room temperature under argon for 90 min.
Triethylphosphite (5.6 mL, 33 mmol) was added and the resulting mixture was irradiated with a 300 W visible light bulb
located about 20 cm from the flask for 6.5 h in an open system (Dimroth refrigerant). The organic solvent was evaporated
under reduced pressure. 6 M HCl (6 mL) was added, the mixture was stirred for 5 min and then was extracted with
CH
2
Cl
2
(3×2 mL). Evaporation of the acidic fraction under high vacuum gave L-alanine hydrochloride 2a·HCl (1.2 g,
22
D
9
6% yield) identical in all respects with the authentic product. Selected spectral data: 2a·HCl: [α]
=+14.2 (c=10, 6 N
O, 50 MHz) δ 175.3 (C_O), 51.4 (CH), 18.0 (CH
). 2b·HCl:
O, 50 MHz) δ 174.3 (C_O), 61.1
2
0
13
HCl), lit.: [α]
D
=+14.5 (c=10, 6 N HCl); C NMR (D
2
3
2
2
23
13
[
(
α]
D
=−27.1 (c=3.4, 6 N HCl), lit.: [α]
D
=−27.4 (c=3.4, 6 N HCl); C NMR (D
2
2
2
25
13
CH), 31.8 (CH), 20.2 (CH
3
), 19.7 (CH3). 2c·HCl: [α]
D
=+6.8 (c=1.6, CH
3
OH), lit.: [α]
D 3
=+7.0 (c=1.6, CH OH); C
NMR (D
2
3 3
O, 50 MHz) δ 174.1 (C_O), 56.4 (CH ), 51.6 (CH), 18.0 (CH ). Glutathione (γ-L-Glu-L-Cys-Gly) 3 treated
in acetonitrile/water with triethylboron for 2 min and irradiated with triethylphosphite for 8 h was converted into γ-
L-Glu-L-Ala-Gly 4.14 The reaction was checked by RP-HPLC and MALDI-TOF-MS. Glutathione 3, [M+H]=308.12,
1
3
[
1
M+Na]=331.11. Corresponding alanyl tripeptide 4, [M+H]=276.10. C NMR (D
74.1, 54.8 (CH), 52.5 (CH), 43.9 (CH ), 33.7 (CH ), 28.1 (CH ), 19.3 (CH ).
2
O, 50 MHz) δ 177.1, 175.6, 175.3,
2
2
2
3