Published on Web 12/29/2007
Metal-Organic Framework from an Anthracene Derivative
Containing Nanoscopic Cages Exhibiting High Methane
Uptake
Shengqian Ma,† Daofeng Sun,† Jason M. Simmons,‡,§ Christopher D. Collier,†
Daqiang Yuan,† and Hong-Cai Zhou*,†
Department of Chemistry and Biochemistry, Miami UniVersity, Oxford, Ohio, 45056,
NIST Center for Neutron Research, National Institute of Standards and Technology,
Gaithersburg, Maryland 20899-6102, and Department of Materials Science and Engineering,
UniVersity of PennsylVania, Philadelphia, PennsylVania 19104
Received September 18, 2007; E-mail: zhouh@muohio.edu
Abstract: A microporous metal-organic framework, PCN-14, based on an anthracene derivative, 5,5′-
(9,10-anthracenediyl)di-isophthalate (H4adip), was synthesized under solvothermal reaction conditions. X-ray
single crystal analysis revealed that PCN-14 consists of nanoscopic cages suitable for gas storage.
N2-adsorption studies of PCN-14 at 77 K reveal a Langmuir surface area of 2176 m2/g and a pore volume
of 0.87 cm3/g. Methane adsorption studies at 290 K and 35 bar show that PCN-14 exhibits an absolute
methane-adsorption capacity of 230 v/v, 28% higher than the DOE target (180 v/v) for methane storage.
1. Introduction
research in the past decade due to their interesting structures
and various potential applications.8 In particular, their excep-
tionally high surface areas,9 uniform but tunable pore sizes,10
and functionalizable pore walls11 make MOFs suitable for
methane storage and a number of other applications. Several
Ongoing efforts have been made in the search for alternative
fuels to supplement or replace widely used gasoline and diesel
fuels in vehicular applications. Among various alternative fuels,
methane stands out when its profusion and availability are
considered.1 However, the lack of an effective, economic, and
safe on-board storage system is one of the major technical
barriers preventing methane-driven automobiles from competing
with the traditional ones. To promote the vehicular application
of methane, the U.S. Department of Energy (DOE) has set the
target for methane storage at 180 v(STP)/v (standard temperature
and pressure equivalent volume of methane per volume of the
adsorbent material) under 35 bar, near ambient temperature, with
the energy density of adsorbed natural gas (ANG) being
comparable to that of compressed natural gas (CNG) used in
current practice.2
(7) (a) Eddaoudi, M.; Moler, D. B.; Li, H.; Chen, B.; Reineke, T. M.; O’Keeffe,
M.; Yaghi, O. M. Acc. Chem. Res. 2001, 34, 319. (b) Janiak, C. J. Chem.
Soc., Dalton Trans. 2003, 2781. (c) Rowsell, J. L. C.; Yaghi, O. M.
Microporous Mesoporous Mater. 2004, 73, 3. (d) Hill, R. J.; Long, D.-L.;
Champness, N. R.; Hubberstey, P.; Schro¨der, M. Acc. Chem. Res. 2005,
38, 335. (e) Lin, W. B. J. Solid State Chem. 2005, 178, 2486. (f) Ockwig,
N. W.; Delgado-Friedrichs, O.; O’Keeffe, M.; Yaghi, O. M. Acc. Chem.
Res. 2005, 38, 176.
(8) (a) Seo, J. S.; Whang, D.; Lee, H.; Jun, S. I.; Oh, J.; Jeon, Y. J.; Kim, K.
Nature 2000, 404, 982. (b) Rowsell, J. L. C.; Yaghi, O. M. Angew. Chem.,
Int. Ed. 2005, 44, 4670. (c) Matsuda, R.; Kitaura, R.; Kitagawa, S.; Kubota,
Y.; Belosludov, R. V.; Kobayashi, T. C.; Sakamoto, H.; Chiba, T.; Takata,
M.; Kawazoe, Y.; Mita, Y. Nature 2005, 436, 238. (d) Sun, D.; Ma, S.;
Ke, Y.; Petersen, T. M.; Zhou, H.-C. Chem. Commun. 2005, 2663. (e) Sun,
D.; Ke, Y.; Mattox, T. M.; Ooro, B. A.; Zhou. H.-C. Chem. Commun. 2005,
5447. (f) Sun, D.; Ma, S.; Ke, Y.; Collins, D. J.; Zhou, H.-C. J. Am. Chem.
Soc. 2006, 128, 3896. (g) Ma, S.; Zhou, H.-C. J. Am. Chem. Soc. 2006,
128, 11734. (h) Ma, S.; Sun, D.; Ambrogio, M. W.; Fillinger, J. A.; Parkin,
S.; Zhou, H.-C. J. Am. Chem. Soc. 2007, 129, 1858. (i) Sun, D.; Ke, Y.;
Mattox, T. M.; Parkin, S.; Zhou. H.-C. Inorg. Chem. 2006, 45, 7566. (j)
Sun, D.; Collins, D. J.; Ke, Y.; Zuo, J.-L.; Zhou. H.-C. Chem.-Eur. J.
2006, 12, 3768. (k) Ma, S.; Wang, X.-S.; Manis, E. S.; Collier, C. D.;
Zhou, H.-C. Inorg. Chem., 2007, 46, 3432. (l) Ma, S.; Sun, D.; Wang,
X.-S.; Zhou, H.-C. Angew. Chem., Int. Ed. 2007, 46, 2458. (m) Collins, D.
J.; Zhou, H.-C. J. Mater. Chem. 2007, 17, 3154. (n) Yu, C.; Ma, S.; Pechan,
M. J.; Zhou, H.-C. J. Appl. Phys. 2007, 101, 09E108. (o) Gu, J.-Z.; Lu,
W.-G.; Zhou, H.-C.; Lu, T.-B. Inorg. Chem. 2007, 46, 5835. (p) Sun, D.;
Ke, Y.; Collins, D. J.; Lorigan, G. A.; Zhou, H.-C. Inorg. Chem. 2007, 46,
2725.
Several types of porous materials including single-walled
carbon nanotubes,3 zeolites,4 and activated carbon5 have been
extensively tested and evaluated as potential storage media for
methane. However, the DOE targets for methane storage re-
main illusive despite significant progress in activated carbon
materials.6
Emerging as a new type of porous materials, metal-organic
frameworks (MOFs)7 have become a burgeoning field of
(9) (a) Chae, H. K.; Siberio-Perez, D. Y.; Kim, J.; Go, Y. B.; Eddaoudi, M.;
Matzger, A. J.; O’Keeffe, M.; Yaghi, O. M. Nature 2004, 427, 523. (b)
Ferey, G.; Mellot-Draznieks, C.; Serre, C.; Millange, F.; Dutour, J.; Surble,
S.; Margiolaki, I. Science 2005, 309, 2040.
(10) (a) Eddaoudi, Kim, J.; Rosi, N.; Vodak, D.; Wachter, J.; O’Keeffe, M.;
Yaghi, O. M. Science 2002, 295, 469. (b) Chen, B.; Ma, S.; Zapata, F.;
Lobkovsky, E. B.; Yang, J. Inorg. Chem. 2006, 45, 5718. (c) Chen, B.;
Ma, S.; Zapata, F.; Fronczek, F. R.; Lobkovsky, E. B.; Zhou, H.-C. Inorg.
Chem. 2007, 46, 1233.
(11) (a) Kitagawa, S.; Kitaura, R.; Noro, S.-i. Angew. Chem., Int. Ed. 2004, 43,
2334. (b) Wang, X.-S.; Ma, S.; Sun, D.; Parkin, S.; Zhou, H.-C. J. Am.
Chem. Soc. 2006, 128, 16474. (c) Bradshaw, D.; Claridge, J. B.; Cussen,
E. J.; Prior, T. J.; Rosseinsky, M. J. Acc. Chem. Res. 2005, 38, 273.
† Miami University.
‡ National Institute of Standards and Technology.
§ University of Pennsylvania.
(1) U.S. Energy Policy Act of 1992 (EPAct).
(2) Burchell, T; Rogers, M. SAE Tech. Pap. Ser. 2000, 2000-01-2205.
(3) Muris, M.; Dupont-Pavlovsky, N.; Bienfait, M.; Zeppenfeld, P. Surf. Sci.
2001, 492, 67.
(4) Dunn, J. A.; Rao, M.; Sircar, S.; Gorte, R. J.; Myers, A. L. Langmuir 1996,
12, 5896.
(5) Quinn, D. F.; MacDonald, J. A. F. Carbon 1992, 29, 1097.
(6) (a) Wegrzyn, J.; Gurevich, M. Appl. Energy. 1996, 55, 71. (b) NSF press
9
1012
J. AM. CHEM. SOC. 2008, 130, 1012-1016
10.1021/ja0771639 CCC: $40.75 © 2008 American Chemical Society