3
562
Organometallics 2006, 25, 3562-3564
A Highly Regioselective Cyanothiolation of Alkynes via Oxidative
Addition of Thiocyanates to
Tetrakis(triphenylphosphine)palladium(0) Catalyst
†
‡
†
,§
Ikuyo Kamiya, Jun-ichi Kawakami, Shigenobu Yano, Akihiro Nomoto,* and
,
§
Akiya Ogawa*
DiVision of Material Science, Nara Women’s UniVersity, Kitauoyanishi-machi, Nara 630-8506, Japan,
Takeda Pharmaceutical Company Limited, 2-17-85 Jusohonmachi, Yodogawa-ku, Osaka 532-0024, Japan,
and Department of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture UniVersity, 1-1
Gakuen-cho, Nakaku, Sakai, Osaka 599-8531, Japan
ReceiVed January 17, 2006
Summary: Tetrakis(triphenylphosphine)palladium(0) catalyzes
the highly regioselectiVe addition of phenyl thiocyanate (PhSCN)
to terminal alkynes, which attains the simultaneous introduction
of thio and cyano groups to the internal and terminal positions
of alkynes, respectiVely. This reaction may proceed Via the
oxidatiVe addition of PhSCN to Pd(PPh3)4, which forms Pd-
the first example of transition-metal-catalyzed cyanothiolation
of terminal alkynes with thiocyanates, which attains simulta-
neous introduction of both sulfur and cyano groups into carbon-
carbon triple bonds with an excellent regioselectivity.
Table 1 indicates the results of catalytic cyanothiolation using
several transition metal complexes. Among the complexes
examined (entries 1-9), only zerovalent palladium complexes
such as Pd(PPh3)4 indicated a catalytic activity toward the
desired cyanothiolation of 1-octyne, and interestingly the
corresponding 3-phenylthionon-2-enenitrile was obtained with
an excellent regioselectivity (entry 9). To optimize the reaction
(SPh)(CN)(PPh3)2 as the key intermediate.
Transition-metal-catalyzed reactions of organic silicon, boron,
and tin compounds provide very useful methods for selective
introductions of heterofunctions as well as carbon-carbon bond
forming reactions based on the characteristic features of these
1
conditions, the Pd(PPh ) -catalyzed cyanothiolation of 1-octyne
heteroatoms. In contrast, the transition-metal-catalyzed reactions
3 4
was examined under several reaction conditions (entries 10-
of group 16 heteroatom compounds have been largely unex-
plored, partly because these compounds are believed to be
14). The reaction is greatly influenced by the solvent employed.
2
The reaction in CH CN resulted in the low yield of the
catalyst poisons for transition-metal-catalyzed reactions. In
991, we disclosed an efficient transition-metal-catalyzed ad-
3
cyanothiolation product (entry 14), whereas the reactions in THF
1
3
(entry 13) or benzene (entry 11) afforded higher yields.
dition of organic disulfides to alkynes, and after this report,
several synthetically useful transition-metal-catalyzed addition
reactions of organosulfur compounds to unsaturated compounds
7
Consequently, upon heating at 120 °C in benzene, the desired
product is obtained in good yield with an excellent regioselec-
tivity (entry 11).
were developed by us and other groups.4 Herein we report
-6
*
To whom correspondence should be addressed. E-mail:
(5) (a) Kuniyasu, H.; Ogawa, A.; Sato, K.; Ryu, I.; Kambe, N.; Sonoda,
N. J. Am. Chem. Soc. 1992, 114, 5902-5903. (b) Ishiyama, T.; Nishijima,
K.; Miyaura, N.; Suzuki, A. J. Am. Chem. Soc. 1993, 115, 7219-7225. (c)
B a¨ ckvall, J. E.; Erickson, A. J. Org. Chem. 1994, 59, 5850-5851. (d)
Ogawa, A.; Kawakami, J.; Sonoda, N.; Hirao, T. J. Org. Chem. 1996, 61,
4161-4163. (e) Kuniyasu, H.; Sugoh, K.; Su, M. S.; Kurosawa, H. J. Am.
Chem. Soc. 1997, 119, 4669-4677. (f) Gareau, Y.; Orellana, A. Synlett
1997, 803-804. (g) Han, L.-B.; Tanaka, M. J. Am. Chem. Soc. 1998, 120,
8249-8250. (h) Kondo, T.; Uenoyama, S.; Fujita, K.; Mitsudo, T. J. Am.
Chem. Soc. 1999, 121, 482-483. (i) Ogawa, A.; Ikeda, T.; Kimura, K.;
Hirao, T. J. Am. Chem. Soc. 1999, 121, 5108-5109. (j) Han, L.-B.; Tanaka,
M. Chem. Lett. 1999, 863-864. (k) Kondo, T.; Morisaki, Y.; Uenoyama,
S.; Wada, K.; Mitsudo, T. J. Am. Chem. Soc. 1999, 121, 8657-8658. (l)
Xiao, W.-J.; Alper, H. J. Org. Chem. 1999, 94, 9646-9652. (m) Arisawa,
M.; Yamaguchi, M. Org. Lett. 2001, 3, 763-764. (n) Arisawa, M.; Kozuki,
Y.; Yamaguchi, M. J. Org. Chem. 2003, 68, 8964-8967. (o) Ananikov, V.
P.; Kabeshov, M. A.; Beletskaya, I. P.; Aleksandrov, G. G.; Eremenko, I.
L. J. Organomet. Chem. 2003, 687, 451-461. (p) Kondo, T.; Baba, A.;
Nishi, Y.; Mitsudo, T. Tetrahedron Lett. 2004, 45, 1469-1471. (q) Kondo,
T.; Kanda, Y.; Baba, A.; Fukuda, K.; Nakamura, A.; Wada, K.; Morisaki,
Y.; Mitsudo, T. J. Am. Chem. Soc. 2002, 124, 12960-12961. (r) Arisawa,
M.; Suwa, A.; Fujimoto, K.; Yamaguchi, M. AdV. Synth. Catal. 2003, 345,
560-563. (s) Arisawa, M.; Kozuki, Y.; Yamaguchi, M. J. Org. Chem. 2003,
68, 8964-8967. (t) Ananikov, V. P.; Kabeshov, M. A.; Beletskaya, I. P.;
Aleksandrov, G. G.; Eremenko, I. L. J. Org. Chem. 2003, 68, 451-461.
(u) Kondo, T.; Baba, A.; Nishi, Y.; Mitsudo, T. Tetrahedron Lett. 2004,
45, 1469-1471. (v) Ananikov, V. P.; Beletskaya, I. P. Org. Biomol. Chem.
2004, 2, 284-287. (w) Ananikov, V. P.; Kabeshov, M. A.; Beletskaya, I.
P. Synlett 2005, 1015-1017. (x) Ananikov, V. P.; Kabeshov, M. A.;
Beletskaya, I. P.; Khrustalev, V. N.; Antipin, M. Y. Organometallics 2005,
24, 1275-1283. (y) Ananikov, V. P.; Malyshev, D. A.; Beletskaya, I. P.;
Aleksandrov, G. G.; Eremenko, I. L. AdV. Synth. Catal. 2005, 347, 1993-
2001.
ogawa@chem.osakafu-u.ac.jp.
†
Nara Women’s University.
Takeda Pharmaceutical Company Limited.
Osaka Prefecture University.
‡
§
(
1) (a) Miura, K.; Hosomi, A. In Main Group Metals in Organic
Synthesis; Yamamoto, H., Oshima, K., Eds.; Wiley-VCH: Weinheim, 2004;
Vol. 2, Chapter 10. (b) Orita, A.; Otera, J. In Main Group Metals in Organic
Synthesis; Yamamoto, H., Oshima, K., Eds.; Wiley-VCH: Weinheim, 2004;
Vol. 2, Chapter 12. (c) Miyaura, N. In Catalytic Heterofunctionalization;
Togni, A., Gru z¨ macher, H., Eds.; Wiley-VCH: Weinheim, 2001; Chapter
1
. (d) Tang, J.; Hayashi, T. In Catalytic Heterofunctionalization; Togni,
A., Gr u¨ zmacher, H., Eds.; Wiley-VCH: Weinheim, 2001; Chapter 3. (e)
Davies, A. G. Organotin Chemistry; VCH: Weinheim, 1997. (f) Ojima, I.
In The Chemistry Organic Silicon Compounds; Patai, S., Rappopot, Z., Eds.;
Wiley-Interscience: Chichester, 1989.
(
2) Hegedus, L. L.; McCabe, R. W. Catalyst Poisoning; Marcel Dek-
ker: New York, 1984.
3) Kuniyasu, H.; Ogawa, A.; Miyazaki, S.; Ryu, I.; Kambe, N.; Sonoda,
N. J. Am. Chem. Soc. 1991, 113, 9796-9803.
4) For reviews, see: (a) Ogawa, A. In Main Group Metals in Organic
(
(
Synthesis; Yamamoto, H., Oshima, K., Eds.; Wiley-VCH: Weinheim, 2004;
Vol. 2, Chapter 15. (b) Alonso, F.; Beletskaya, I. P.; Yus, M. Chem. ReV.
004, 104, 3079-3159. (c) El Ali, B.; Alper, H. In Handbook of
2
Organopalladium Chemistry for Organic Synthesis; Negishi, E., Ed.;
Wiley: New York, 2002; Chapter VI.2.1.1.2. (d) Ogawa, A. In Handbook
of Organopalladium Chemistry for Organic Synthesis; Negishi, E., Ed.;
Wiley: New York, 2002; Chapter VII.6. (e) Kuniyasu, H. In Catalytic
Heterofunctionalization; Togni, A., Gr u¨ zmacher, H., Eds.; Wiley-VCH:
Weinheim, 2001; Chapter 7. (f) Kondo, T.; Mitsudo, T. Chem. ReV. 2000,
1
4
00, 3205-3220. (g) Ogawa, A. J. Organomet. Chem. 2000, 611, 463-
74. (h) Han, L.-B.; Tanaka, M. Chem. Commun. 1999, 395-402. (i)
Beletskaya, I.; Moberg, C. Chem. ReV. 1999, 99, 3435-3461.
1
0.1021/om0600442 CCC: $33.50 © 2006 American Chemical Society
Publication on Web 06/23/2006