8146 Journal of Medicinal Chemistry, 2008, Vol. 51, No. 24
Campbell et al.
S. R.; Yarema, K. J. Targeting glycosylation pathways and the cell
cycle: sugar-dependent activity of butyrate-carbohydrate cancer pro-
drugs. Chem. Biol. 2006, 13, 1265–1275.
treated with the specified compounds as described. Activities
of luciferase and ꢀ-galactosidase were measured via chemilu-
minescent and colorimetric assays (Promega, Madison, WI),
respectively. Normalized transactivation activity of NF-κB was
calculated from ratios of luciferase and ꢀ-galactosidase activities.
Proteasome Activity. Proteasome activity was assayed using
a succinyl luminogenic proteasome substrate (Promega, Madison,
WI). Viable MDA-MB-231 cells (100000 cells in 100 µL of
RPMI) were incubated with the luminogenic substrate according
to the manufacturer’s instructions. Proteasome activity was
calculated from luminescent activity normalized to that of
untreated controls. The proteasome inhibitor epoxomicin (Sigma,
St. Louis, MO) provided a positive control.
(15) Aich, U.; Campbell, C. T.; Elmouelhi, N.; Weier, C. A.; Sampathku-
mar, S.-G.; Choi, S. S.; Yarema, K. J. Regioisomeric SCFA attachment
to hexosamines separates metabolic flux from cytotoxcity and MUC1
suppression. ACS Chem. Biol. 2008, 3, 230–240.
(16) Chen, L.-F.; Greene, W. C. Shaping the nuclear action of NF-κB. Nat.
ReV. Mol. Cell. Biol. 2004, 5, 392–401.
(17) Lavis, L. D. Ester bonds in prodrugs. ACS Chem. Biol. 2008, 3, 203–
206.
(18) Kim, E. J.; Jones, M. B.; Rhee, J. K.; Sampathkumar, S.-G.; Yarema,
K. J. Establishment of N-acetylmannosamine (ManNAc) analogue-
resistant cell lines as improved hosts for sialic acid engineering
applications. Biotechnol. Prog. 2004, 20, 1674–1682.
(19) Finnie, I. A.; Dwarakanath, A. D.; Taylor, B. A.; Rhodes, J. M. Colonic
mucin synthesis is increased by sodium butyrate. Gut 1995, 36, 93–
99.
(20) Hatayama, H.; Iwashita, J.; Kuwajima, A.; Abe, T. The short chain
fatty acid, butyrate, stimulates MUC2 mucin production in the human
colon cancer cell line, LS174T. Biochem. Biophys. Res. Commun.
2007, 356, 599–603.
Acknowledgment. Funding was provided by the National
Institutes of Health (CA112314-01A1 for ManNAc analogue
synthesis and analysis of pro-invasive oncogenes and
AR054005-01 for GlcNAc analogue synthesis) and by the
Susan G. Komen Foundation (BCTR0503768) for the inva-
sion assays.
(21) Deryugina, E. I.; Quigley, J. P. Matrix metalloproteinases and tumor
metastasis. Cancer Metastasis ReV. 2006, 25, 9–34.
(22) Williams, E. A.; Coxhead, J. M.; Mathers, J. C. Anticancer effects of
butyrate: use of micro-array technology to investigate mechanisms.
Proc. Nutr. Soc. 2003, 62, 107–115.
(23) Basson, M. D.; Liu, Y.-W.; Hanly, A. M.; Emenaker, N. J.; Shenoy,
S. G.; Gould Rothberg, B. E. Identification and comparative analysis
of human colonocyte short-chain fatty acid response genes. J.
Gastrointest. Surg. 2000, 4, 501–512.
(24) Khan, A.; Greenman, J.; Archibald, S. J. Small molecule CXCR4
chemokine receptor antagonists: developing drug candidates. Curr.
Med. Chem. 2007, 14, 2257–2277.
Supporting Information Available: Synthesis and character-
ization of analogues; supporting information for cell-based
assays. This material is available free of charge via the Internet
References
(1) Keppler, O. T.; Horstkorte, R.; Pawlita, M.; Schmidt, C.; Reutter, W.
Biochemical engineering of the N-acyl side chain of sialic acid:
biological implications. Glycobiology 2001, 11, 11R–18R.
(2) Campbell, C. T.; Sampathkumar, S.-G.; Weier, C.; Yarema, K. J.
Metabolic oligosaccharide engineering: perspectives, applications, and
future directions. Mol. Biosyst. 2007, 3, 187–194.
(3) Sarkar, A. K.; Fritz, T. A.; Taylor, W. H.; Esko, J. D. Disaccharide
uptake and priming in animal cells: inhibition of sialyl Lewis X by
acetylated Gal ꢀ1,4GlcNAc ꢀ-O-naphthalenemethanol. Proc. Natl.
Acad. Sci. U.S.A. 1995, 92, 3323–3327.
(4) Jones, M. B.; Teng, H.; Rhee, J. K.; Baskaran, G.; Lahar, N.; Yarema,
K. J. Characterization of the cellular uptake and metabolic conversion
of acetylated N-acetylmannosamine (ManNAc) analogues to sialic
acids. Biotechnol. Bioeng. 2004, 85, 394–405.
(5) Sampathkumar, S.-G.; Campbell, C. T.; Weier, C.; Yarema, K. J. Short-
chain fatty acid-hexosamine cancer prodrugs: The sugar matters! Drugs
Future 2006, 31, 1099–1116.
(6) Finnin, M. S.; Donigian, J. R.; Cohen, A.; Richon, V. M.; Rifkind,
R. A.; Marks, P. A.; Breslow, R.; Pavletich, N. P. Structures of a
histone deacetylase homologue bound to the TSA and SAHA
inhibitors. Nature 1999, 401, 188–193.
(7) Mann, B. S.; Johnson, J. R.; Cohen, M. H.; Justice, R.; Pazdur, R.
FDA approval summary: vorinostat for treatment of advanced primary
cutaneous T-cell lymphoma. Oncologist 2007, 12, 1247–1252.
(8) Kayser, H.; Zeitler, R.; Kannicht, C.; Grunow, D.; Nuck, R.; Reutter,
W. Biosynthesis of a nonphysiological sialic acid in different rat
organs, using N-propanoyl-D-hexosamines as precursors. J. Biol. Chem.
1992, 267, 16934–16938.
(25) Crazzolara, R.; Johrer, K.; Johnstone, R. W.; Greil, R.; Kofler, R.;
Meister, B.; Bernhard, D. Histone deacetylase inhibitors potently
repress CXCR4 chemokine receptor expression and function in acute
lymphoblastic leukaemia. Br. J. Heamatol. 2002, 119, 965–969.
(26) Redondo-Munoz, J.; Escobar-Diaz, E.; Samaniego, R.; Terol, M. J.;
Garcia-Marco, J. A.; Garcia-Pardo, A. MMP-9 in B-cell chronic
lymphocytic leukemia is up-regulated by R4ꢀ1 integrin or CXCR4
engagement via distinct signaling pathways, localizes to podosomes,
and is involved in cell invasion and migration. Blood 2006, 108, 3143–
3151.
(27) Ahmad, R.; Raina, D.; Trivedi, V.; Ren, J.; Rajabi, H.; Kharbanda,
S.; Kufe, D. MUC1 oncoprotein activates the IκB kinase ꢀ complex
and constitutive NF-κB signalling. Nat. Cell Biol. 2007, 9, 1419–1427.
(28) Thathiah, A.; Brayman, M.; Dharmaraj, N.; Julian, J. J.; Lagow, E. L.;
Carson, D. D. Tumor necrosis factor alpha stimulates MUC1 synthesis
and ectodomain release in a human uterine epithelial cell line.
Endocrinology 2004, 145, 4192–4203.
(29) Ten, R. M.; Paya, C. V.; Israel, N.; Le Bail, O.; Mattei, M. G.;
Virelizier, J. L.; Kourilsky, P.; Israel, A. The characterization of the
promoter of the gene encoding the p50 subunit of NF-κB indicates
that it participates in its own regulation. EMBO J. 1992, 11, 195–
203.
(30) Monks, N. R.; Pardee, A. B. Targeting the NF-κB pathway in estrogen
receptor negative MDA-MB-231 breast cancer cells using small
inhibitory RNAs. J. Cell. Biochem. 2006, 98, 221–233.
(31) Liu, T.; Guo, Z.; Yang, Q.; Sad, S.; Jennings, H. J. Biochemical
engineering of surface R2,8 polysialic acid for immunotargeting tumor
cells. J. Biol. Chem. 2000, 275, 32832–32836.
(9) Mahal, L. K.; Yarema, K. J.; Bertozzi, C. R. Engineering chemical
reactivity on cell surfaces through oligosaccharide biosynthesis. Science
1997, 276, 1125–1128.
(10) Lemieux, G. A.; Yarema, K. J.; Jacobs, C. L.; Bertozzi, C. R.
Exploiting differences in sialoside expression for selective targeting
of MRI contrast reagents. J. Am. Chem. Soc. 1999, 121, 4278–4279.
(11) Jacobs, C. L.; Yarema, K. J.; Mahal, L. K.; Nauman, D. A.; Charters,
N.; Bertozzi, C. R. Metabolic labeling of glycoproteins with chemical
tags through unnatural sialic acid biosynthesis. Methods Enzymol. 2000,
327, 260–275.
(12) Kim, E. J.; Sampathkumar, S.-G.; Jones, M. B.; Rhee, J. K.; Baskaran,
G.; Yarema, K. J. Characterization of the metabolic flux and apoptotic
effects of O-hydroxyl- and N-acetylmannosamine (ManNAc) analogs
in Jurkat (human T-lymphoma-derived) cells. J. Biol. Chem. 2004,
279, 18342–18352.
(13) Pouillart, P.; Douillet, O.; Scappini, B.; Gozzini, A.; Santini, V.; Grossi,
A.; Pagliai, G.; Strippoli, P.; Rigacci, L.; Ronco, G.; Villa, P.
Regioselective synthesis and biological profiling of butyric and
phenylalkylcarboxylic esters derivated from D-mannose and xylitol:
influence of alkyl chain length on acute toxicity. Eur. J. Pharm. Sci.
1999, 7, 93–106.
(32) Wang, Q.; Zhang, J.; Guo, Z. Efficient glycoengineering of GM3 on
melanoma cell and monoclonal antibody-mediated selective killing
of the glycoengineered cancer cell. Bioorg. Med. Chem. 2007, 15,
7561–7567.
(33) Meutermans, W.; Le, G. T.; Becker, B. Carbohydrates as scaffolds in
drug discovery. ChemMedChem 2006, 1, 1164–1194.
(34) Minucci, S.; Pelicci, P. G. Histone deacetylase inhibitors and the
promise of epigenetic (and more) treatments for cancer. Nat. ReV.
Cancer 2006, 6, 38–51.
(35) Miki, K.; Nagai, T.; Suzuki, K.; Tsujimura, R.; Koyama, K.; Kinoshita,
K.; Furuhata, K.; Yamada, H.; Takahashi, K. Anti-influenza virus
activity of biflavonoids. Bioorg. Med. Chem. Lett. 2007, 17, 772–
775.
(36) Albini, A.; Benelli, R.; Noonan, D. M.; Brigati, C. The “chemoinvasion
assay”: a tool to study tumor and endothelial cell invasion of basement
membranes. Int. J. DeV. Biol. 2004, 48, 563–571.
(37) Jourdian, G. W.; Dean, L.; Roseman, S. The sialic acids. XI. A
periodate-resorcinol method for the quantitative estimation of free sialic
acids and their glycosides. J. Biol. Chem. 1971, 246, 430–435.
(14) Sampathkumar, S.-G.; Jones, M. B.; Meledeo, M. A.; Campbell, C. T.;
Choi, S. S.; Hida, K.; Gomutputra, P.; Sheh, A.; Gilmartin, T.; Head,