7090
Ö. Ömür Pekel, E. Erdik / Tetrahedron Letters 52 (2011) 7087–7090
7. Knochel, P.; Thaler, T.; Diene, C. Isr. J. Chem. 2010, 50, 547–557.
In conclusion, we have established a new and simple Ni-cata-
8. Rudolph, A.; Lautens, M. Angew. Chem., Int. Ed. 2009, 48, 2656–2670.
9. Frisch, A. C.; Beller, M. Angew. Chem., Int. Ed. 2005, 44, 674–688.
10. Netherton, M. R.; Fu, G. C. Adv. Synth. Catal. 2004, 346, 1525–1532.
11. Phapale, V. B.; Cardenas, D. J. Chem. Soc. Rev. 2009, 38, 1598–1607.
12. Jana, R.; Pethak, T. D.; Sigman, M. S. Chem. Rev. 2011, 111, 1417–1492.
13. Cardenas, D. J. Angew. Chem., Int. Ed. 2003, 42, 384–387.
14. Erdik, E.; Pekel, Ö. Ö. J. Organomet. Chem. 2008, 693, 338–342.
15. Erdik, E.; Pekel, Ö. Ö. Tetrahedron Lett. 2009, 50, 1501–1503.
16. Erdik, E.; Pekel, Ö. Ö.; Kalkan, M. Appl. Organomet. Chem. 2009, 23, 245–248.
17. Erdik, E.; Özkan, D. J. Phys. Org. Chem. 2009, 12, 1148–1154.
18. Jensen, A. E.; Knochel, P. J. Org. Chem. 2002, 67, 79.
lyzed protocol for the cross-coupling of mixed methylarylzincs with
primary alkyl iodides27 leading to an atom-economic alternative to
aryl–primary alkyl coupling using diarylzincs. We are working to
probe the generality of the mixed arylzinc–alkyl coupling reaction
with respect to the coupling of aryl nucleophiles containing a wide
range of functional groups and also the coupling of activated alkyl
electrophiles such as benzyl, allyl, and a-carbonylalkyl halides.
Acknowledgment
19. Organ, M. G.; Avola, S.; Dubovyk, I.; Hadei, N.; Kantchev, E. A. B.; O’Brien, C. J.;
Volante, C. Chem. Eur. J. 2006, 12, 4749–4755. and references cited therein.
20. Çalımsız, S.; Organ, M. Chem. Commun. 2011, 47, 5181–5183. and references
cited therein.
21. Joshi-Pangu, A.; Ganesh, M.; Biscoe, M. R. Org. Lett. 2011, 13, 1218–1221.
22. Achonduh, G. T.; Hadei, N.; Volante, C.; Avola, S.; O’Brien, C. J.; Organ, M. G.
Chem. Commun. 2010, 46, 4109–4111. and references cited therein.
23. Note. The use of PEPPSI as a Pd catalyst in the coupling of n-BuPhZn (1ac) with
n-pentyl iodide 2 did not give selective Ph group transfer. The coupling yield in
We thank the Turkish Scientific and Technical Research Council,
Grant No. TBAG 106T644 for financial support.
References and notes
THF/NMP (2:1) was 67% with
a 3:4 molar ratio of 20:80. However, the
1. (a) The Chemistry of Organozinc Compounds; Rappoport, Z., Marek, I., Eds.;
Wiley: Chichester, 2007; (b)Organozinc Reagents. A Practical Approach; Knochel,
P., Jones, P., Eds.; Oxford University Press: Oxford, 1999; (c) Erdik, E. Organozinc
Reagents in Organic Synthesis; New York: CRC Press, 1996.
background coupling yield with Ph2Zn was 72%.26
24. Pekel, Ö. Ö. Ph.D. Thesis, Ankara University, Institute of Basic and Engineering
Sciences, 2011.
25. Giovanni, R.; Knochel, P. J. Am. Chem. Soc. 1998, 120, 11186.
2. Lemre, A.; Coté, A.; Jones, M. K.; Charette, A. B. Aldrichim. Acta 2009, 42, 71–83.
3. (a) Laloe, E.; Srebnik, W. Tetrahedron Lett. 1994, 35, 5587–5591; (b) Johnson, J.
B.; Yu, P.; Fink, P.; Bercot, E. A.; Rovis, T. Org. Lett. 2006, 8, 4307–4310; (c) Wipf,
P.; Ribe, S. J. Org. Chem. 1998, 63, 6454–6455; (d) Oppolzer, W.; Radinov, R. N.
Helv. Chim. Acta 1992, 75, 170–173; (e) Lipshutz, B. H.; Randall, W. V.
Tetrahedron Lett. 1999, 40, 2871–2874; (f) Hupe, E.; Knochel, P. Org. Lett.
2001, 3, 127–130; (g) Bolm, C.; Herman, N.; Hildebrand, J. P.; Muniz, K. Angew.
Chem., Int. Ed. 2000, 29, 3465–3467; (h) Özçubukçu, S.; Schmidt, F.; Bolm, C.
Org. Lett. 2005, 7, 1407–1409; (i) Rudolph, J.; Bolm, C.; Norby, P. O. J. Am. Chem.
Soc. 2005, 127, 1548–1552; (j) Rudolph, J.; Rasmussen, T.; Bolm, C.; Norby, P. O.
Angew. Chem., Int. Ed. 2003, 42, 3002–3005; (k) Fontes, M.; Verdaguer, X.; Sola,
L.; Pericas, M. A.; Riera, A. J. Org. Chem. 2004, 69, 2532–2543; (l) Schinnerl, M.;
Seitz, M.; Kaiser, A.; Reiser, O. Org. Lett. 2001, 3, 4259–4262; (m) Kim, J. G.;
Walsh, P. H. Angew. Chem., Int. Ed. 2006, 45, 4175–4178; (n) Oppolzer, W.;
Radinov, R. N. J. Am. Chem. Soc. 1993, 115, 1593–1594; (o) Srebnik, M.
Tetrahedron Lett. 1991, 32, 2449–2451; (p) Niwa, S.; Soai, K. J. J. Chem. Soc.,
Perkin Trans. 1 1990, 937–943.
4. (a) Berger, S.; Langer, F.; Lutz, C.; Knochel, P.; Mobley, T. A.; Reddy, C. K. Angew.
Chem., Int. Ed. 1997, 36, 1496–1498; (b) Lutz, C.; Jones, P.; Knochel, P. Synthesis
1999, 312–316; (c) Lutz, C.; Knochel, P. J. Org. Chem. 1997, 62, 7895–7898; (d)
Trawerse, J. F.; Hoveyda, A. N.; Snapper, M. Org. Lett. 2003, 5, 3273–3275; (e)
Jones, P.; Knochel, P. J. Chem. Soc., Perkin Trans. 1 1997, 3117–3118; (f) Jones, P.;
Reddy, C. K.; Knochel, P. Tetrahedron 1998, 54, 1471–1490; (g) Reddy, C. K.;
Devasagayaray, A.; Knochel, P. Tetrahedron Lett. 1996, 37, 4495–4498; (h)
Rimkus, A.; Sewald, N. Org. Lett. 2002, 4, 3289–3291; (i) Jensen, A. E.; Knochel,
P. J. Org. Chem. 2002, 67, 79–85; (j) Soorukram, D.; Knochel, P. Org. Lett. 2004, 6,
2409–2411.
26. Jensen, A. E.; Dohle, W.; Knochel, P. Tetrahedron 2000, 46, 4197.
27. Typical procedure for the coupling of methylarylzincs with primary alkyl
iodides: All reactions were carried out in oven-dried glassware under a positive
pressure of nitrogen using standard syringe-septum cap techniques.28 For the
preparation of methylarylzinc reagents (aryl: C6H5, MeC6H4, MeOC6H4),
arylzinc chlorides were reacted with methylmagnesium chloride. Arylzinc
chloride was prepared by addition of arylmagnesium bromide (2 mmol) to
ZnCl2 (2 mmol) in THF (4 ml) at ꢀ20 °C and stirring at that temperature for
15 min. To freshly prepared arylzinc chloride (2 mmol), methylmagnesium
chloride (2 mmol) was added and the mixture was stirred at ꢀ20 °C for another
15 min. For the preparation of methylarylzinc reagents (aryl: 4-MeCOC6H4, 3-
MeCOC6H4), arylmagnesium bromides were reacted with methylzinc
chloride.26 Arylmagnesium bromide (2 mmol) was prepared by addition of
isopropylmagnesium bromide (2.1 mmol) to a solution of aryl iodide (2 mmol)
in THF (4 ml) at ꢀ15 °C and stirring at that temperature for 1 hour to complete
the Br/Mg exchange.29 Arylmagnesium bromide (2 mmol) solution was added
to methylzinc chloride (2 mmol), freshly prepared by addition of
methylmagnesium bromide (2 mmol) to ZnCl2 (2 mmol) in THF (4 ml) at
ꢀ20 °C and the mixture was stirred at that temperature for 15 min. For the
alkyl coupling reaction of methylarylzincs,
a mixture of NiCl2 (10 mol %,
0.013 g), PPh3 (10 mol %, 0.0263) and primary alkyl iodide in THF (2 ml) was
cooled to 0 °C and freshly prepared methylarylzinc (2 mmol) was added
slowly. The reaction mixture was stirred at room temperature for 1 h and then
hydrolyzed by addition of 1 M HCl and subsequently extracted with Et2O. The
combined ethereal solutions were washed with aq NaHCO3 solution, dried and
aliquots were analyzed by GC.
28. Leonard, J.; Lygo, B.; Procter, G. Advanced Practical Organic Chemistry; Blackie:
London, 1995.
29. Jensen, A. E.; Dohle, W.; Sapountzis, I.; Lindsay, D. M.; Vu, V. A.; Knochel, P.
Synthesis 2002, 565–569.
5. Metal Catalyzed Cross-Coupling Reactions; de Meijere, A., Diederich, F., Eds., 2nd
ed.; Wiley-VCH: Weinheim, 2004.
6. Beller, M.; Bolm, C. Transition Metals for Organic Synthesis, 2nd ed.; Wiley-VCH:
Weinheim, 2004.