H
A. Howard et al.
Paper
Synthesis
(2) (a) Metal-Catalyzed Cross-Coupling Reactions; de Meijere, A.;
Diederich, F., Ed.; Wiley-VCH: Weinheim, 2004, 2nd ed..
(b) Seechurn, C. C. C. J.; Kitching, M. O.; Colacot, T. J.; Snieckus,
V. Angew. Chem. Int. Ed. 2012, 51, 5062.
(3) For representative examples of Pd-catalyzed decarboxylative
reactions, see: (a) Hu, P.; Zhang, M.; Jie, X.; Su, W. Angew. Chem.
Int. Ed. 2012, 51, 227. (b) Zhang, F.-Z.; Greaney, M. F. Angew.
Chem. Int. Ed. 2010, 49, 2768. (c) Xie, K.; Yang, Z.; Zhou, X.; Li, X.;
Wang, S.; Tan, Z.; An, X.; Guo, C.-C. Org. Lett. 2010, 12, 1564.
(d) Wang, C.; Piel, I.; Glorius, F. J. Am. Chem. Soc. 2009, 131,
4194. (e) Cornella, J.; Lu, P.; Larrosa, I. Org. Lett. 2009, 11, 5506.
(f) Voutchkova, A.; Coplin, A.; Leadbeater, N. E.; Crabtree, R. H.
Chem. Commun. 2008, 6312.
(4) For representative examples of Rh- and Ru-catalyzed reactions,
see: (a) Neely, J. M.; Rovis, T. J. Am. Chem. Soc. 2014, 136, 2735.
(b) Zhang, J.; Liu, J.-F.; Ugrinov, A.; Pillai, A. F. X.; Sun, Z.-M.;
Zhao, P. J. Am. Chem. Soc. 2013, 135, 17270. (c) Wang, J.; Liu, B.;
Zhao, H.; Wang, J. Organometallics 2012, 31, 8598. (d) Sun, Z. M.;
Zhang, J.; Zhao, P. Org. Lett. 2010, 12, 992. (e) Austeri, M.; Linder,
D.; Lacour, J. Adv. Synth. Catal. 2010, 352, 3339. (f) Austeri, M.;
Linder, D.; Lacour, J. Chem. Eur. J. 2008, 14, 5737. (g) Burger, E.
C.; Tunge, J. A. Org. Lett. 2004, 6, 2603.
(5) For representative examples of Cu-catalyzed decarboxylative
reactions, see: (a) Chen, L.; Ju, L.; Bustin, K. A.; Hoover, J. M.
Chem. Commun. 2015, 51, 15059. (b) Ponpandian, T.;
Muthusubramanian, S. Tetrahedron Lett. 2012, 53, 4248.
(c) Shang, R.; Fu, Y.; Wang, Y.; Xu, Q.; Yu, H.-Z.; Liu, L. Angew.
Chem. Int. Ed. 2009, 48, 9350.
(6) For representative examples of Fe-catalyzed decarboxylative
cross-couplings, see: (a) Rong, G.; Liu, D.; Lu, L.; Yan, H.; Zheng,
Y.; Chen, J.; Mao, J. Tetrahedron 2014, 70, 5033. (b) Zhao, J.;
Zhou, W.; Han, J.; Li, G.; Pan, Y. Tetrahedron Lett. 2013, 54, 6507.
(c) Zhao, J.; Fang, H.; Han, J.; Pan, Y. Beilstein J. Org. Chem. 2013,
9, 1718. (d) Yang, H.; Yan, H.; Sun, P.; Zhu, Y.; Lu, L.; Liu, D.;
Rong, G.; Mao, J. Green Chem. 2013, 15, 976. (e) Bi, H.-P.; Chen,
W.-W.; Liang, Y.-M.; Li, C.-J. Org. Lett. 2009, 11, 3246.
(7) For Ni-catalyzed decarboxylative cross-couplings, see: (a) Yang,
K.; Zhang, C.; Wang, P.; Zhang, Y.; Ge, H. Chem. Eur. J. 2014, 20,
7241. (b) Wu, Y.; Liu, L.; Yan, K.; Xu, P.; Gao, Y.; Zhao, Y. J. Org.
Chem. 2014, 79, 8118. (c) Zuo, Z.; Ahneman, D. T.; Chu, L.;
Terrett, J. A.; Doyle, A. G.; MacMillan, D. W. C. Science 2014, 345,
437. (d) Choe, J.; Yang, J.; Park, K.; Palani, T.; Lee, S. Tetrahedron
Lett. 2012, 53, 6908.
(8) For Ni-catalyzed decarbonylative and decarboxylative C–H ary-
lations, see: (a) Crovak, R. A.; Hoover, J. M. J. Am. Chem. Soc.
2018, 140, 2434. (b) Honeycutt, A. P.; Hoover, J. M. ACS Catal.
2017, 7, 4597. (c) Crawford, J. M.; Shelton, K. E.; Sadarananda, B.
K.; Reeves, E. K.; Kalyani, D. Org. Chem. Front. 2015, 2, 726.
(d) Yang, K.; Wang, P.; Zhang, C.; Kadi, A. A.; Fun, H.-K.; Zhang,
Y.; Lu, H. Eur. J. Org. Chem. 2014, 7586. (e) Amaike, K.; Muto, K.;
Yamaguchi, J.; Itami, K. J. Am. Chem. Soc. 2012, 134, 13573.
(9) (a) Mesganaw, T.; Garg, N. K. Org. Process Res. Dev. 2013, 17, 29.
(b) Kozhushkov, S. I.; Potukuchi, H. K.; Ackermann, L. Catal. Sci.
Technol. 2013, 3, 562. (c) So, C. M.; Kwong, F. Y. Chem. Soc. Rev.
2011, 40, 4963. (d) Rosen, B. M.; Quasdorf, K. W.; Wilson, D. A.;
Zhang, N.; Resmerita, A.-M.; Garg, N. K.; Percec, V. Chem. Rev.
2011, 111, 1346. (e) Li, B.-J.; Yu, D.-G.; Sun, C.-L.; Shi, Z.-J. Chem.
Eur. J. 2011, 17, 1728. (f) Yu, D.-G.; Li, B.-J.; Shi, Z.-J. Acc. Chem.
Res. 2010, 43, 1486. (g) Antoft-Finch, A.; Blackburn, T.; Snieckus,
V. J. Am. Chem. Soc. 2009, 131, 17750.
(10) (a) Lee, J.-H.; Raja, G. C. E.; Yu, S.; Lee, J.; Song, K. H.; Lee, S. ACS
Omega 2017, 2, 6259. (b) Fujino, T.; Hinoue, T.; Usuki, Y.; Satoh,
T. Org. Lett. 2016, 18, 5688. (c) Sardzinski, L. W.; Wertjes, W. C.;
Schnaith, A. M.; Kalyani, D. Org. Lett. 2015, 17, 1256. (d) Song,
B.; Knauber, T.; Gooßen, L. J. Angew. Chem. Int. Ed. 2013, 52,
2954. (e) Gooßen, L. J.; Rodríguez, N.; Lange, P. P.; Linder, C.
Angew. Chem. Int. Ed. 2010, 49, 1111. (f) Kim, H.; Lee, P. H. Adv.
Synth. Catal. 2009, 351, 2827. (g) Gooßen, L. J.; Rodríguez, N.;
Linder, C. J. Am. Chem. Soc. 2008, 130, 15248.
(11) (a) Steinberg, D. F.; Turk, M. C.; Kalyani, D. Tetrahedron 2017, 73,
2196. (b) Yi, Z.; Aschenaki, Y.; Daley, R.; Davick, S.; Schnaith, A.;
Wander, R.; Kalyani, D. J. Org. Chem. 2017, 82, 6946.
(c) Ferguson, D. M.; Rudolph, S. R.; Kalyani, D. ACS Catal. 2014, 4,
2395. (d) Wang, J.; Ferguson, D. M.; Kalyani, D. Tetrahedron
2013, 69, 5780. (e) Nervig, C. S.; Waller, P. J.; Kalyani, D. Org.
Lett. 2012, 14, 4838.
(12) For Ni-catalyzed synthesis of diarylalkynes via decarboxylative
cross-coupling, see: (a) Son, Y.; Kim, H.-S.; Lee, J.-H.; Jang, J.;
Lee, C.-F.; Lee, S. Tetrahedron Lett. 2017, 58, 1413. (b) Raja, G. C.
E.; Irudayanathan, F. M.; Kim, H.-S.; Kim, J.; Lee, S. J. Org. Chem.
2016, 81, 5244.
(13) For Pd-catalyzed synthesis of diarylalkynes via decarboxylative
cross-coupling, see: (a) Jang, J.; Raja, G. C. E.; Lee, J.-H.; Son, Y.;
Kim, J.; Lee, S. Tetrahedron Lett. 2016, 57, 4581. (b) Lee, J.-H.;
Raja, G. C. E.; Son, Y.; Jang, J.; Kim, J.; Lee, S. Tetrahedron Lett.
2016, 57, 4824. (c) Li, X.; Yang, F.; Wu, Y. J. Org. Chem. 2013, 78,
4543. (d) Park, K.; Bae, G.; Moon, J.; Choe, J.; Song, K. H.; Lee, S. J.
J. Org. Chem. 2010, 75, 6244.
(14) The reactions are heterogeneous. The carboxylate is less soluble
in p-xylene than in dioxane or diglyme. The lower yields at
higher temperature might be in part due to decarboxylative
dimerization (mass consistent with this byproduct was
observed by GCMS). The Aldrich specification sheet for dioxane
or diglyme did not mention the presence of any inhibitors.
(15) The carboxylate equivalence is largely empirical. The products
were isolated using reaction conditions that showed highest
conversion and least byproducts by GCMS. The reaction using p-
methoxyphenyl tosylate led to the product in low yield and we
were unable to isolate a clean sample of the desired product.
(16) (a) Shang, R.; Xu, Q.; Jiang, Y.-Y.; Wang, Y.; Liu, L. Org. Lett. 2010,
12, 1000. (b) Ogata, T.; Hartwig, J. F. J. Am. Chem. Soc. 2008, 130,
13848. (c) Lei, X.; Jalla, A.; Shama, M. A. A.; Stafford, J. M.; Cao, B.
Synthesis 2015, 47, 2578.
(17) Liu, L.; Zhao, D.; Liu, M.; Zhou, Y.; Chen, T. Org. Lett. 2018, 20,
2741.
(18) Nishida, T.; Ida, H.; Kuninobo, Y.; Kanai, M. Nat. Commun. 2014,
5, 1.
(19) Okura, K.; Kawashima, H.; Tamakuni, F.; Nishida, N.; Shirakawa,
E. Chem. Commun. 2016, 52, 14019.
(20) Tian, Z.-Y.; Wang, S.-M.; Jia, S.-J.; Song, H.-X.; Zhang, C.-P. Org.
Lett. 2017, 19, 5454.
(21) Zhang, M.; Jia, T.; Wang, C. Y.; Walsh, P. J. J. Am. Chem. Soc. 2015,
137, 10346.
© Georg Thieme Verlag Stuttgart · New York — Synthesis 2018, 50, A–H