¨
H. Groger et al. / Tetrahedron 60 (2004) 633–640
639
J. Mol. Biol. 1998, 278, 967–981. (f) Holt, P. J.; Williams,
R. E.; Jordan, K. N.; Lowe, C. R.; Bruce, N. C. FEMS
Microbiol. Lett. 2000, 190, 57–62. (g) Matsuda, T.; Harada,
T.; Nakamura, K. Chem. Commun. 2000, 1367–1368.
(h) Riebel, B.; Hummel, W. Biotechnol. Lett. 2001, 23,
231–234. (i) Schubert, T.; Hummel, W.; Kula, M.-R.; Mu¨ller,
M. Eur. J. Org. Chem. 2001, 4181–4187. (j) Stampfer, W.;
Kosjek, B.; Moitzi, C.; Kroutil, W.; Faber, K. Angew. Chem.
2002, 114, 1056–1059. (k) Abokitse, K.; Hummel, W. Appl.
Microbiol. Biotechnol. 2003, 62, 380–386.
3.5. Enzymatic reduction at higher substrate
concentrations (according to Scheme 5) exemplified for
the reaction with a substrate concentration of 100 mM
At a reaction temperature of 30 8C, 10 U of the recombinant
(S)-alcohol dehydrogenase from R. erythropolis (see also
Ref. 3k), and 10 U of the formate dehydrogenase from
C. boidinii (mutant: C23S, C262A; expression in E. coli; see
also Ref. 8) were added to a solution of 0.5 mmol of
p-chloroacetophenone (83.9 mg), 2.5 mmol sodium formate
(171.6 mg), and 0.1 mmol of NADH (70.2 mg) in a solvent
mixture, consisting of 1 mL of n-heptane, and 4 mL of a
phosphate buffer (50 mM; pH 7.0). After stirring the
reaction mixture for 21 h, the organic phase was separated
and the aqueous phase was extracted with 3£5 mL of
methyl tert-butyl ether. The collected organic phases were
dried over magnesium sulfate, and after filtration and
evaporation of the volatile components in vacuo the
resulting oily crude product was analyzed with respect to
the conversion rate (via NMR, HPLC).
4. For reviews about biocatalytic reductions in general, see:
(a) Hummel, W. Adv. Biochem. Engng Biotechnol. 1997, 58,
146–184. (b) Faber, K. Biotransformations in organic
chemistry; 4th ed. Springer: Berlin, 2000; Chapter 2.2.3,
pp 192–194.
5. For selected contributions of an alternative approach via
asymmetric metal-catalyzed hydrogenation of ketones, see:
(a) Burk, M. J.; Hems, W.; Herzberg, D.; Malan, C.; Zanotti-
Gerosa, A. Org. Lett. 2000, 2, 4173–4176. (b) Ohkuma, T.;
Koizumi, M.; Yoshida, M.; Noyori, R. Org. Lett. 2000, 2,
1749–1751. (c) Ohkuma, T.; Takeno, H.; Honda, Y.; Noyori,
R. Adv. Synth. Catal. 2001, 343, 369–375. Review: (d) Noyori,
R.; Okhuma, T. Angew. Chem., Int. Ed. 2001, 40, 40–73.
6. For selected contributions of an alternative approach via
asymmetric whole-cell-biocatalytic reduction of ketones, see:
(a) Yasohara, Y.; Kizaki, N.; Hasegawa, J.; Wada, M.;
Kataoka, M.; Shimizu, S. Tetrahedron: Asymmetry 2001, 12,
1713–1718. (b) Korkhin, Y.; Kalb, A. J.; Peretz, M.; Bogin,
O.; Burstein, Y.; Frolow, F. J. Mol. Biol. 1998, 278, 967–981.
(c) Riebel, B.; Hummel, W. Biotechnol. Lett. 2001, 23,
231–234. (d) Stampfer, W.; Kosjek, B.; Faber, K.; Kroutil, W.
J. Org. Chem. 2003, 68, 402–406. (e) Haberland, J.; Hummel,
W.; Daubmann, T.; Liese, A. Org. Proc. Res. Dev. 2002, 6,
458–462.
In addition, for the asymmetric reduction at a substrate
concentration of 100 mM the product (S)-2a has been
purified from the crude product and isolated via TLC-
chromatography (eluent: ethylacetate/n-hexane (25:75);
thin-layer-chromatography plate: Merck TLC plate
20£20 cm, silica gel 60 F254; Rf-value: 0.21; yield: 67%).
Acknowledgements
This work was supported by the Bundesministerium fu¨r
Bildung und Forschung (Biotechnologie 2000—
Nachhaltige BioProduktion; Project: ‘Entwicklung eines
biokatalytischen und nachhaltigen Verfahrens zur
industriellen Herstellung enantiomerenreiner Amine und
Alkohole unter besonderer Beru¨cksichtigung der
7. For selected contributions of an alternative approach via
asymmetric reduction of ketones based on substrate-coupled
cofactor-regeneration, see: (a) Wolberg, M.; Ji, A. G.;
Hummel, W.; Mu¨ller, M. Synthesis 2001, 937–942.
(b) Schubert, T.; Hummel, W.; Mu¨ller, M. Angew. Chem.
¨
Atomokonomie’).
¨
2002, 114, 656–659. (c) Stillger, T.; Bonitz, M.; Villela, F.;
Liese, A. Chem. Ing. Techn. 2002, 74, 1035–1039.
8. The properties of the cofactor-regenerating enzyme FDH from
C. boidinii have been improved remarkably by protein
engineering in the Kula group. Thus, a stable and efficient
formate dehydrogenase is now available on large scale for
NADH-regeneration, see: Slusarczyk, H.; Felber, S.; Kula,
M.-R.; Pohl, M. Eur. J. Biochem. 2000, 267, 1280–1289.
9. In spite of its high technical potential and applicability, the
FDH from C. boidinii was found to be sensitive towards the
presence of organic solvents. The general problem of rapid
deactivation of enzymes other than hydrolases in the presence
of organic solvents, has been previously described in several
coontributions, e.g. in: Kruse, W.; Kragl, U.; Wandrey, C. DE
4436149, 1996.
References and notes
1. Reviews: (a) Kula, M. R.; Kragl, U. In Stereoselective
biocatalysis; Patel, R. N., Ed.; Marcel Dekker: New York,
2000; pp 839–866 Chapter 28. (b) Hummel, W. TIBTECH
1999, 17, 487–492.
2. (a) Hummel, W.; Schu¨tte, H.; Schmidt, E.; Wandrey, C.; Kula,
M.-R. Appl. Microbiol. Biotechnol. 1987, 26, 409–416.
(b) Bommarius, A. S.; Drauz, K.; Hummel, W.; Kula, M.-R.;
Wandrey, C. Biocatalysis 1994, 10, 37–47. (c) Krix, G.;
Bommarius, A. S.; Drauz, K.; Kottenhahn, M.; Schwarm, M.;
Kula, M.-R. J. Biotechnol. 1997, 53, 29–39.
3. Numerous efficient (S)- and (R)-specific alcohol dehydrogen-
ases have been already found. For selected contributions, see:
(a) Bradshaw, C. W.; Hummel, W.; Wong, C.-H. J. Org.
Chem. 1992, 57, 1532. (b) Ammendola, S.; Raia, C. A.;
Caruso, C.; Camardella, L.; D’Auria, S.; De Rosa, M.; Rossi,
M. Biochemistry 1992, 31, 12514–12523. (c) Cannio, R.;
Fiorentino, G.; Carpinelli, P.; Rossi, M.; Bartolucci, S.
J. Bacteriol. 1996, 178, 301–305. (d) Bogin, O.; Peretz, M.;
Burstein, Y. Protein Sci. 1997, 6, 450–458. (e) Korkhin, Y.;
Kalb, A. J.; Peretz, M.; Bogin, O.; Burstein, Y.; Frolow, F.
10. This efficient ‘three-loops’-concept is based on an enzymatic
reaction in pure aqueous medium, a separation of the aqueous
phase from the enzyme via ultrafiltration, and a subsequent
continuous extraction of the aqueous phase with an organic
solvent. Organic and aqueous phases are separated by a
hydrophobic membrane. This method is described in: (a) Liese,
A.; Seelbach, K.; Wandrey, C. Industrial biotransformations;
Wiley-VCH: Weinheim, 2000. (b) Kruse, W.; Hummel, W.;
Kragl, U. Recl. Trav. Chim. Pays-Bas 1996, 115, 239–243.