Communication
Green Chemistry
Grignard, along with the THF used as solvent; iron constitutes
only ca. 3% of these NPs.
Nat. Chem. Biol., 2013, 9, 475; (c) R. Xie, S. Hong and
X. Chen, Curr. Opin. Chem. Biol., 2013, 17, 747; (d) Y. Su,
J. Ge, B. Zhu, Y.-G. Zheng, Q. Zhu and S. Q. Yao, Curr. Opin.
Chem. Biol., 2013, 17, 768.
Conclusion
5 (a) R. A. Evans, Aust. J. Chem., 2007, 60, 384;
(b) W. H. Binder and R. Sachsenhofer, Macromol. Rapid
Commun., 2008, 29, 952.
6 M. Aminia, R. Hassandoosta, M. Bagherzadehb,
S. Gautamc and K. H. Chaed, Catal. Commun., 2016, 85, 13.
7 P. Iniyavan, G. L. Balaji, S. Sarveswari and V. Vijayakumar,
Tetrahedron Lett., 2015, 56, 5002.
8 J. H. Wanga, C. W. Pan, Y. T. Li, F. F. Meng, H. G. Zhou,
C. Yang, Q. Zhang, C. G. Bai and Y. Chen, Tetrahedron Lett.,
2013, 54, 3406.
9 R. P. Jumde, C. Evangelisti, A. Mandoli, N. Scotti and
R. Psaro, J. Catal., 2015, 324, 25.
In summary, an experimentally simple procedure has been
developed leading to the formation of nanoparticles contain-
ing ppm levels of active Cu(I) that effect click reactions
between azides and alkynes in water at ambient temperatures.
These [3 + 2]-cycloadditions are enabled by the presence of a
surfactant, TPGS-750-M, engineered to maximize reaction
efficiency. All ingredients within these aqueous mixtures are
recyclable within the same reaction vessel: the water, surfac-
tant, and the catalyst, while the product is easily extracted with
minimal amounts of a single organic solvent. Only traces of
residual copper are to be expected in the triazole products
formed in high yields. Further developments of new catalysts
based on Fe/ppm metal NPs containing other base metals
(e.g., Ni), as well as precious metals (e.g., Rh and Ir), will be
reported in due course.
10 A. Pathigoolla, R. P. Pola and K. M. Sureshan, Appl. Catal.,
A, 2013, 453, 151.
11 X. Xiong and L. Cai, Catal. Sci. Technol., 2013, 3, 1301.
12 I. Billault, F. Pessel, A. Petit, R. Turgis and
M. C. Scherrmann, New J. Chem., 2015, 39, 1986.
13 C. Deraedt, N. Pinaud and D. Astruc, J. Am. Chem. Soc.,
2014, 136, 12092.
14 S. Handa, Y. Wang, F. Gallou and B. H. Lipshutz, Science,
2015, 349, 1087.
15 B. H. Lipshutz, S. Ghorai, A. R. Aleba, R. Moster,
T. Nishikita, C. Duplais and A. Krasovskiy, J. Org. Chem.,
2011, 76, 4379.
Acknowledgements
We are very pleased to acknowledge the NSF (SusChEM
1561158) for supporting this work.
16 E. D. Slack, C. M. Gabriel and B. H. Lipshutz, Angew.
Chem., Int. Ed., 2014, 53, 14051.
Notes and references
1 M. B. Gawande, A. Goswami, F.-X. Felpin, T. Asefa, 17 B. H. Lipshutz, P. Mollard, S. S. Pfeiffer and W. Chrisman,
X. Huang, R. Silva, X. Zou, R. Zboril and R. S. Varma,
Chem. Rev., 2016, 116, 3722.
2 (a) D. Zeng, B. M. Zeglis, J. S. Lewis and C. J. Anderson,
J. Nucl. Med., 2013, 54, 829; (b) X.-P. He, J. Xie, Y. Tang, J. Li
J. Am. Chem. Soc., 2002, 124, 14282.
18 S. Narayan, J. Muldoon, M. G. Finn, V. V. Fokin, H. C. Kolb
and K. B. Sharpless, Angew. Chem., Int. Ed., 2005, 44,
3275.
and G.-R. Chen, Curr. Med. Chem., 2012, 19, 2399; 19 V. V. Rostovtsev, L. G. Green, V. V. Fokin and
(c) X.-P. He, Y.-L. Zeng, Y. Zang, J. Li, R. A. Fiel and
G.-R. Chen, Carbohydr. Res., 2016, 429, 1.
K. B. Sharpless, Angew. Chem., Int. Ed., 2002, 41, 2596.
20 R. A. Sheldon, Green Chem., 2007, 9, 1273.
3 X. Wang, B. Huang, X. Liu and P. Zhan, Drug Discovery 21 B. H. Lipshutz, N. A. Isley, J. C. Fennewald and E. D. Slack,
Today, 2016, 21, 118. Angew. Chem., Int. Ed., 2013, 52, 10952.
4 (a) S. I. Presolski, V. P. Hong and M. G. Finn, Curr. Protoc. 22 R. A. Sheldon, I. W. C. E. Arends and U. Hanefeld, Green
Chem. Biol., 2011, 3, 153; (b) M. Grammel and H. C. Hang,
Chemistry and Catalysis, Wiley-VCH, Weinheim, 2007.
Green Chem.
This journal is © The Royal Society of Chemistry 2017