ChemComm
Communication
Applications pertaining to water-soluble functionalized CuI–NHCs
may be of special interest.13
´
Financial support from Region Auvergne (PNC) is acknowledged.
´
Kevin Fauche and Maxime de Sousa Lopes Moreira participated to
this study as part of their undergraduate training.
Notes and references
1 (a) N-Heterocyclic Carbenes. From Laboratory Curiosities to Efficient
´
´
Synthetic Tools, ed. S. Dıez-Gonzalez, RSC catalysis series, Cambridge,
´
´
2010; (b) S. Dıez-Gonzalez, E. C. Escudero-Adan, J. Benet-Buchholz,
E. D. Stevens, A. M. Z. Slawin and S. P. Nolan, Dalton Trans., 2010,
39, 7595; (c) J. C. Y. Lin, R. T. W. Huang, C. S. Lee, A. Bhattacharyya,
W. S. Hwang and I. J. B. Lin, Chem. Rev., 2009, 109, 3561.
`
2 Using carbonate: (a) M. Fevre, J. Pinaud, A. Leteneur, Y. Gnanou,
J. Vignolle and D. Taton, J. Am. Chem. Soc., 2012, 134, 6776;
(b) S. Zhu, R. Liang and H. Jiang, Tetrahedron, 2012, 68, 7949;
(c) O. Santoro, A. Collado, A. M. Z. Slawin, S. P. Nolan and
C. S. J. Cazin, Chem. Commun., 2013, 49, 10483. Using NH3:
(d) C. Gibard, H. Ibrahim, A. Gautier and F. Cisnetti, Organometallics,
2013, 32, 4279. Electrosynthesis: (e) B. R. M. Lake, E. K. Bullough,
T. J. Williams, A. C. Whitwood, M. A. Little and C. E. Willans, Chem.
Commun., 2012, 48, 4887. Continuous flow: ( f ) S. M. Opalka, J. K. Park,
A. R. Longstreet and T. D. McQuade, Org. Lett., 2013, 15, 996. Micro-
waves: (g) B. Lander and O. Navarro, Eur. J. Inorg. Chem., 2012, 2980.
3 (a) S. Gaillard, C. S. J. Cazin and S. P. Nolan, Acc. Chem. Res., 2012,
Scheme 3 Proposed mechanistic path.
the inductive period and completion time by 10 min and 30 min
(1 and 0.5 mol%), respectively.
´
45, 778; (b) S. Gaillard, J. Bosson, R. S. Ramon, P. Nun,
A. M. Z. Slawin and S. P. Nolan, Chem. – Eur. J., 2010, 16, 13729.
A probable mechanism of catalysis by 1 is displayed in
Scheme 3.10 The reaction is expected to proceed through the
formation of a s, p dicuprated complex 12. Reversible coordination
of azide 9 followed by annulation through intermediate 14 and
protonation of the resulting triazolide copper–NHC (15)11 delivers
the target 1,2,3-triazole 11 as well as the copper–NHC species 6
which could enter into the catalytic cycle through the coordination
of a new alkyne delivering 12 or reforming 1.
´
´
4 (a) S. Dıez-Gonzalez, E. D. Stevens, N. M. Scott, J. L. Petersen and
´
´
S. P. Nolan, Chem. – Eur. J., 2008, 14, 158; (b) S. Dıez-Gonzalez and
S. P. Nolan, Angew. Chem., Int. Ed., 2008, 47, 8881.
¨
5 (a) M.-L. Teyssot, A. Chevry, M. Traıkia, M. El-Ghozzi, D. Avignant
and A. Gautier, Chem. – Eur. J., 2009, 15, 6322; (b) M.-L. Teyssot,
L. Nauton, J.-L. Canet, F. Cisnetti, A. Chevry and A. Gautier, Eur.
J. Org. Chem., 2010, 3507; (c) S. Hohloch, B. Sarkar, L. Nauton,
F. Cisnetti and A. Gautier, Tetrahedron Lett., 2013, 14, 1808. For
selected applications: (d) Z. Chamas, X. Guo, J.-L. Canet, A. Gautier,
D. Boyer and R. Mahiou, Dalton Trans., 2010, 39, 7091; (e) C. Gaulier,
A. Hospital, B. Legeret, A. F. Delmas, V. Aucagne, F. Cisnetti and
A. Gautier, Chem. Commun., 2012, 48, 4005.
6 H. C. Kolb, M. G. Finn and B. K. Sharpless, Angew. Chem., Int. Ed.,
2001, 40, 2004.
7 V. Jurkauskas, J. P. Sadighi and S. L. Buchwald, Org. Lett., 2003,
5, 2417.
8 N. P. Mankad, D. S. Laitar and J. P. Sadighi, Organometallics, 2004,
23, 3369.
9 (a) S. Hohloch, D. Scheiffele and B. Sarkar, Eur. J. Inorg. Chem., 2013,
3956; chloride inhibition has been noticed for other ligands:
(b) J. E. Hein and V. V. Fokin, Chem. Soc. Rev., 2010, 39, 1302. For
triazolium-derived CuI–NHCs see also: (c) T. Nakamura,
T. Terashima, K. Ogata and S.-i. Fukuzawa, Org. Lett., 2011, 13, 620.
Addition of 2 eq. of phen* disrupts 1 into [Cu(IPr)(phen*)]+
(16)12 – liberating simultaneously one equivalent of base which
could facilitate alkyne deprotonation to access 12. Phen* could
also block the reformation of inactive 1 at the end of the catalytic
cycle. Moreover, phen* may tune the electronic properties at
several intermediates and transition states – especially, by analogy
to previous reports, for the dicuprated complex 12 and the
transition state between 13 and 144a,b,9b
In summary, we have reported the synthesis of [{Cu(IPr)}2-
(m-OH)](BF4), (1), the first m-hydroxo dicopper(I)–NHC. This
species is easily synthesized in hydro alcoholic media using
ammonia. Thanks to the absence of coordinating halides, the
catalytic activity of (1) in CuAAC is greatly increased compared
to [Cu(IPr)Cl], (7). Moreover, the addition of phen* to (1) leads to a
marked enhancement of the catalytic efficiency. Compared to
10 Mechanistic investigation using
a dinuclear copper complex:
(a) J. Straub, E. Schreiner, S. Mader, F. Rominger and B. F. Straub,
Adv. Synth. Catal., 2012, 354, 3445. For a deep mechanistic study:
(b) B. T. Worrell, J. A. Malik and V. V. Fokin, Science, 2013, 340, 457.
See also ref. 5a.
11 (a) C. Nolte, P. Mayer and B. F. Straub, Angew. Chem., Int. Ed., 2007,
46, 2101; (b) B. F. Straub, Chem. Commun., 2007, 3868.
previously reported systems containing halides, such a PECu effect 12 Addition of phen to 1 (see ESI†) results in previously reported
[Cu(IPr)(phen)]+ species: V. A. Krylova, P. I. Djurovich, M. T. White
and M. E. Thompson, Chem. Commun., 2010, 46, 6696.
13 (a) Ref. 5e; (b) W. Wang, J. Wu, C. Xia and F. Li, Green Chem., 2011,
is optimally efficient. The synthesis of other [{Cu(NHC)}2(m-OH)]+
complexes is currently under investigation as well as their use
as catalysts for other reactions under halide-free conditions.
13, 3440.
7156 | Chem. Commun., 2014, 50, 7154--7156
This journal is ©The Royal Society of Chemistry 2014