Page 7 of 8
Chemical Science
Please do not adjust margins
Journal Name
ARTICLE
9
peptides using DFT calculation tDoOgeI:t1h0e.1r03Vi9ew/wCiAt7rhStiCcl0e1XO9-n3rlia3nEye
crystallography and NMR spectroscopy was recently
reported by Miller’s group, see: A. J. Metrano, N. C. Abascal,
B. Q. Mercado, E. K. Paulson, A. E. Hurtley, S. J. Miller, J. Am.
Acknowledgements
This work was supported by Grant-in-Aid for Scientific
Research on Innovative Areas ‘Advanced Molecular
Transformations by Organocatalysts’ from MEXT.
Chem. Soc. 2017, 139, 492–516.
10 H. Ikeda, K. Yoshida, M. Ozeki, I. Saito, Tetrahedron Lett.
2001, 42, 2529–2531.
Notes and references
11 For selected studies on polymer-supported peptide catalysts,
see: (a) K. Akagawa, S. Sakamoto, K. Kudo, Tetrahedron Lett.
2005, 46, 8185–8187; (b) K. Akagawa, K. Kudo, Angew. Chem.
Int. Ed. 2012, 51, 12786–12789; (c) K. Akagawa, J. Sen, K.
Kudo, Angew. Chem. Int. Ed. 2013, 52, 11585–11588; (d) Y.
Arakawa, H. Wennemers, ChemSusChem 2013, 6, 242–245;
1
(a) T. C. Bruice, Acc. Chem. Res. 1980, 13, 256–262; (b) C.
Walsh, Acc. Chem. Res. 1980, 13, 148–155; (c) D. P. Ballou, in
Flavins and Flavoproteins (Eds.: V. Massey, C. H. Williams),
Elsevier, New York, 1982
, p 301; (d) Chemistry and
Biochemistry of Flavoenzymes (Ed.: F. Müller), CRC Press,
Boston, 1991; (e) R. B. Silverman, Acc. Chem. Res. 1995, 28,
335–342; (f) N. M. Kamerbeek, D. B. Janssen, W. J. H. van
Berkel, M. W. Fraaije, Adv. Synth. Catal. 2003, 345, 667–678;
(g) Flavins—Photochemistry and Photobiology (Eds.: E. Silva,
A. M. Edwards), Royal Society of Chemistry, Cambridge,
(e) K. Akagawa, N. Sakai, K. Kudo, Angew. Chem. Int. Ed. 2015
54, 1822–1826.
,
12 For reviews, see: (a) Polymeric Chiral Catalyst Design and
Chiral Polymer Synthesis (Ed.: S. Itsuno), Wiley, Hoboken,
2011; (b) A. F. Trindade, P. M. P. Gois, C. A. M. Afonso, Chem.
Rev. 2009, 109, 418–514.
2006
Biooxidations—Enzymes, Reactions and Applications (Eds.: R.
D. Schmid, V. Urlancher-Kursif), Wiley-VCH, Weinheim, 2007
; (h) M. W. Fraaije, D. B. Janseen, in Modern
13 The product was racemic. To achieve not only the
stabilization of active species but also enantioselective
,
reactions, the catalysts must be designed in
a more
p 77; (i) M. Insińska-Rak, M. Sikorski, Chem. Eur. J. 2014, 20,
15280–15291.
elaborated perspective. However, it would be interesting to
note that the oxidation of 2-(4-methoxyphenyl)-1,3-dithiane
could also be promoted with Fl-Pep5-b under the optimal
conditions found for the sulfoxidation of thioanisole to give
2
3
(a) H. Iida, Y. Imada, S.-I. Murahashi, Org. Biomol. Chem.
2015, 13, 7599–7613; (b) R. Cibulka, Eur. J. Org. Chem. 2015
,
915–932; (c) G. de Gonzalo, M. W. Fraaije, ChemCatChem
2013, 5, 403–415; (d) Y. Imada, T. Naota, Chem. Rec. 2007, 7,
354–361; (e) F. G. Gelalcha, Chem. Rev. 2007, 107, 3338–
3361; (f) J.-E. Bӓckvall, in Modern Oxidation Methods (Ed.: J.-
E. Bӓckvall), Wiley-VCH, Weinheim, 2004, p 193.
2-(4-methoxyphenyl)-1,3-dithiane 1-oxide in 88% yield (65 h),
diastereoselectivity of 24:1 (trans:cis), and an
a
enantioselectivity of 3% ee (trans). This preliminary result
shows a possibility of the development of asymmetric
flavopeptidic catalysts.
(a) K. Tamao, T. Hayashi, Y. Ito, J. Chem. Soc., Chem. Commun.
1988, 795–797; (b) Y. Imada, T. Kitagawa, T. Ohno, H. Iida, T.
Naota, Org. Lett. 2010, 12, 32–35; (c) Y. Imada, H. Iida, T.
Kitagawa, T. Naota, Chem. Eur. J. 2011, 17, 5908–5920; (d) H.
Schmaderer, P. Hilgers, R. Lechner, B. König, Adv. Synth.
Catal. 2009, 351, 163–174; (e) R. Lechner, B. König, Synthesis
2010, 10, 1712–1718; (f) R. Lechner, S. Kümmel, B. König,
Photochem. Photobiol. Sci. 2010, 9, 1367–1377; (g) B.
Mühldorf, R. Wolf, Chem. Commun. 2015, 51, 8425–8428; (h)
J. B. Metternich, R. Gilmour, J. Am. Chem. Soc. 2016, 138,
1040–1045; (i) T. Hering, B. Mühldorf, R. Wolf, B. König,
Angew. Chem. Int. Ed. 2016, 55, 5342–5345; (j) J. Dad’ová, E.
Svobodová, M. Sikorski, B. König, R. Cibulka, ChemCatChem
2012, 4, 620–623; (k) J. B. Metternich, R. Gilmour, J. Am.
14 To demonstrate the feasibility of product isolation, we
carried out the oxidation of thioanisole with Fl-Pep5-b under
the optimized conditions in a larger reaction scale (1 mmol
of thioanisole, see ESI†). The reaction was rather less
efficient compared with the standard scale, possibly due to
varied mixing efficiency of the gas-liquid-solid triphasic
system, so that 4 equivalents of hydrazine monohydrate was
added after 14 h to the reaction mixture. After 48 h in total,
methyl phenyl sulfoxide was obtained in 94% GC yield and,
after purification by silica gel column chromatography, in
85% isolated yield (119 mg, 0.85 mmol).
15 S. Oae, K. Asada, T. Yoshimura, Tetrahedron Lett. 1983, 24,
1265–1268.
16 Y. Imada, H. Iida, S.-I. Murahashi, T. Naota, Angew. Chem. Int.
Chem. Soc. 2015
, 137, 11254–11257; (l) V. Mojr, E.
Ed. 2005, 44, 1704–1706.
Svobodová, K. Straková, T. Neveselý, J. Chudoba, H.
Dvořáková, R. Cibulka, Chem. Commun. 2015, 51, 12036–
12039; (m) T. Neveselý, E. Svobodová, J. Chudoba, M.
17 Similar reaction efficiency was observed on a larger scale
(0.8 mmol of 3-phenylcyclobutanone) and the product was
isolated in 66% yield (see ESI†).
Sikorski, R. Cibulka, Adv. Synth. Catal. 2016, 358, 1654–1663.
18 Similar orthogonal reactivities in catalytic oxygenations were
previously reported by Miller’s group with aspartyl-peptide
oxidation catalysts, although their active species was the
transiently formed peracid of the aspartyl group unlike that
of our case, see: (a) J. S. Alford, N. C. Abascal, C. R. Shugrue,
S. M. Colvin, D. K. Romney, S. J. Miller, ACS Cent. Sci. 2016, 2,
4
5
(a) Y. Imada, H. Iida, S. Ono, S.-I. Murahashi, J. Am. Chem. Soc.
2003, 125, 2868–2869; (b) Y. Imada, H. Iida, S. Ono, Y. Masui,
S.-I. Murahashi, Chem. Asian. J. 2006, 1, 136–147.
(a) L. L. Poulsen, D. M. Ziegler, J. Biol. Chem. 1979, 254,
6449–6455; (b) V. Massey, P. Hemmerich, Biochem. Soc.
Trans. 1980, 8, 246–257; (c) N. B. Beaty, D. P. Ballou, J. Biol.
Chem. 1980, 255, 3817–3819.
733
–
739; (b) D. K. Romney, S. M. Colvin, S. J. Miller, J. Am.
14022; (c) P. A. Lichtor, S. J.
5308.
Chem. Soc. 2014, 136, 14019
–
6
7
8
C. Kemal, T. C. Bruice, Proc. Natl. Acad. Sci. U.S.A. 1976, 73,
995–999.
T. Akiyama, F. Simeno, M. Murakami, F. Yoneda, J. Am. Chem.
Soc. 1992, 114, 6613–6620.
(a) E. A. C. Davie, S. M. Mennen, Y. Xu, S. J. Miller, Chem. Rev.
2007, 107, 5759–5812; (b) H. Wennemers, Chem. Commun.
2011, 47, 12036–12041; (c) J. Duschmale, Y. Arakawa, H.
Wennemers, in Science of Synthesis: Asymmetric
Organocatalysis (Ed.: K. Maruoka), Thieme, Stuttgart, 2012, p
741.
Miller, J. Am. Chem. Soc. 2014, 136, 5301
–
19 V. Madison, K. D. Kopple, J. Am. Chem. Soc. 1980, 102, 4855
–
4863.
20 S. Sul, D. Karaiskaj, Y. Jiang, N.-H. Ge, J. Phys. Chem. B 2006
,
110, 19891–19905.
21 Such an effect that gives rise to the unordinary catalytic
function on polystyrene resin is still unusual. For a recent
example, see: K. Goren, J. K.-Kuks, Y. Shiloni, E. B.-Kulbak, S. J.
Miller, M. Portnoy, Chem. Eur. J. 2015, 21, 1191–1197.
This journal is © The Royal Society of Chemistry 20xx
J. Name., 2013, 00, 1-3 | 7
Please do not adjust margins