Green Chemistry
Paper
exchange reaction of Cl− by PdCl4 provides a high perform-
ance magnetically separable Pd catalyst that has remarkable
efficiency and reusability for the Suzuki coupling reaction of a
wide range of activated and deactivated aryl halides with
boronic acids in water. Interestingly, the prepared catalyst
showed improved activity in the Suzuki coupling reaction of
highly challenging substrates such as heteroaryl- and ortho-
substituted aryl halides using very low Pd loading, affording
the corresponding cross-coupled products in excellent yields
and TONs. It is believed that the presence of a hydrophilic
ionic liquid on the structure of the catalyst not only provides a
good distribution of Pd nanoparticles on the surface of the
support and its stability during the reaction but also generates
a stable dispersion (solubility) of the catalyst in water as the
reaction medium and exposes the active Pd sites to substrates
like homogeneous systems. Since the catalyst exhibited extre-
mely low solubility in organic solvent, the recovered aqueous
phase containing the catalyst can be simply and efficiently
used in ten consecutive runs without a significant decrease in
activity and at the end of the process can be easily separated
from the aqueous phase by applying an external magnetic
field. This novel double-separation strategy with negligible
leaching makes the Mag-IL-Pd an eco-friendly and economic
catalyst to perform this transformation. Altogether, the possi-
5 E. A. B. Kantchev, C. J. O’Brien and M. G. Organ, Angew.
Chem., Int. Ed., 2007, 46, 2768; W. A. Herrmann, Angew.
Chem., Int. Ed., 2002, 41, 1290; O. Navarro, R. A. Kelly and
S. P. Nolan, J. Am. Chem. Soc., 2003, 125, 16194;
G. Altenhoff, R. Goddard, C. W. Lehmann and F. Glorius,
J. Am. Chem. Soc., 2004, 126, 15195.
6 L. Botella and C. Najera, Angew. Chem., Int. Ed., 2002, 41,
179; R. B. Bedford, C. S. J. Cazin and S. L. Hazelwood,
Angew. Chem., Int. Ed., 2002, 41, 4120.
2−
7 A. Molnar, Chem. Rev., 2011, 111, 2251.
8 V. Polshettiwar, C. Len and A. Fihri, Coord. Chem. Rev.,
2009, 253, 2599; M. Cai, Q. Xu and Y. Huang, J. Mol. Catal.
A: Chem., 2007, 271, 93; S. M. Lee, H. J. Yoon, J. H. Kim,
W. J. Chung and Y. S. Lee, Pure Appl. Chem., 2007, 79, 1553;
B. Karimi, D. Elhamifar, J. H. Clark and A. J. Hunt,
Chem.–Eur. J., 2010, 16, 8047; B. Karimi and A. Zamani,
Org. Biomol. Chem., 2012, 10, 4531; L. Li, J. L. Shi and
J. N. Yan, Chem. Commun., 2004, 1990; K. Shimizu,
S. Koizumi, T. Hatamachi, H. Yoshida, S. Komai,
T. Kodama and Y. Kitayama, J. Catal., 2004, 228, 141.
9 S. Schweizer, J. M. Becht and C. L. Drian, Tetrahedron,
2010, 66, 765; E. Sin, S. S. Yi and Y. S. Lee, J. Mol. Catal. A:
Chem., 2010, 315, 99; A. Primo, M. Liebel and F. Quignard,
Chem. Mater., 2009, 21, 621.
bility to perform the reaction in water, and at the same time 10 L. Artok and H. Bulut, Tetrahedron Lett., 2004, 45, 3881;
the easy and rapid recycling protocol via the described double-
A. Corma, H. Garcia and A. Leyva, Appl. Catal., A, 2002, 236,
separation technique, makes this protocol a valid candidate
179.
towards the goal of green chemistry. We speculate that this 11 K. Gude and R. Narayanan, J. Phys. Chem. C, 2011, 115,
catalyst system would open a new challenging area in the 12716.
design of new types of water dispersible/magnetically separ- 12 T. Maegawa, Y. Kitamura, S. Sako, T. Udzu, A. Sakurai,
able catalyst systems in other important industrial as well as
synthetic transformations.
A. Tanaka, Y. Kobayashi, K. Endo, U. Bora, T. Kurita,
A. Kozaki, Y. Monguchi and H. Sajiki, Chem.–Eur. J., 2007,
13, 5937; G. Marck, A. Villiger and R. Buchecker, Tetrahe-
dron Lett., 1994, 35, 3277; F. X. Felpin, T. Ayad and S. Mitra,
Eur. J. Org. Chem., 2006, 2679.
References
13 Q. A. Pankhurst, J. Connolly, S. K. Jones and J. Dobson,
J. Phys. D: Appl. Phys., 2003, 36, R167, and references cited
therein; Z. M. Saiyed, S. D. Telang and C. N. Ramchand,
Biomagn. Res. Technol., 2003, 1, 2; S. K. Sahoo and
V. Labhasetwar, Drug Discovery Today, 2003, 8, 1112.
14 For a recent review on the field of magnetically recyclable
catalysts see: V. Polshettiwar, R. Luque, A. Fihri, H. Zhu,
M. Bouhrara and J.-M. Basset, Chem. Rev., 2011, 111,
3036.
1 Metal-Catalyzed Cross-Coupling Reaction, ed. F. Diederich
and A. de Meijere, Wiley-VCH, Weinheim, 2004,
pp. 41–109; J.-P. Corbet and G. Mignani, Chem. Rev., 2006,
106, 2651; L. Yin and J. Liebscher, Chem. Rev., 2007, 107,
133.
2 G. Bringmann, S. Rudenauer, T. Bruhn, L. Benson and
R. Brun, Tetrahedron, 2008, 64, 5563; Y. D. Wang, M. Dutia,
M. B. Floyd, A. S. Prashad, D. Berger and M. Lin, Tetra-
hedron, 2009, 65, 57; F. Bellina, S. Cauteruccio, A. Di Fiore, 15 P. D. Stevens, G. Li, J. Fan, M. Yen and Y. Gao,
C. Marchetti and R. Rossi, Tetrahedron, 2008, 64, 6060;
Y. Fang, R. Karisch and M. Lautens, J. Org. Chem., 2007, 72,
1341; X. Yang, X. Dou and K. Mullen, Chem.–Asian J., 2008,
3, 759; J. Kim and T. M. Swager, Nature, 2001, 411, 1030;
J. Hassan, M. Sevignon, C. Gozzi, E. Schulz and
M. Lemaire, Chem. Rev., 2002, 102, 1359.
Chem. Commun., 2005, 4435; P. Li, L. Wang, L. Zhang and
G. W. Wang, Adv. Synth. Catal., 2012, 354, 1307;
S. Wittmann, A. Schatz, R. N. Grass, W. J. Stark and
O. Reiser, Angew. Chem., Int. Ed., 2010, 49, 1867;
B. Kaboudin, R. Mostafalu and T. Yokomatsu, Green Chem.,
2013, 15, 2266.
3 A. Suzuki, Angew. Chem., Int. Ed., 2011, 50, 6723.
4 A. F. Littke and G. C. Fu, Angew. Chem., Int. Ed., 2002, 41,
4176; P. Lloyd-William and E. Giralt, Chem. Soc. Rev., 2001,
3, 145; L. Pu, Chem. Rev., 1998, 98, 2405; N. Miyaura, Top.
Curr. Chem., 2002, 219, 11.
16 C. Park, H. J. Lee, H. S. Jung, M. Kim, H. J. Kim, K. H. Park
and H. Song, ChemCatChem, 2011, 3, 755; R. Arundhathi,
D. Damodara, P. R. Likhar, M. L. Kantam, P. Saravanan,
T. Magdaleno and S. H. Kwon, Adv. Synth. Catal., 2011, 353,
1591; A. Saha, J. Leazer and R. S. Varma, Green Chem.,
This journal is © The Royal Society of Chemistry 2014
Green Chem.