noboranes can present hurdles to large-scale implementation.
The development of viable substitutes for organostannanes and
organoboranes becomes the important objective.
Pd(OAc)2-Catalyzed Fluoride-Free
Cross-Coupling Reactions of Arylsiloxanes with
Aryl Bromides in Aqueous Medium
Organosilanes (Hiyama) have emerged as premier agents for
effecting this type of cross-coupling reaction currently because
they are environmentally benign and stable to many reaction
conditions.7-9 The potential of the aqueous Hiyama reaction
was recognized with the development of sodium hydroxide as
an efficient promoter, and several examples of the Hiyama
reaction in aqueous medium were recently demonstrated.10 For
example, Wolf and Lerebours reported the Hiyama reaction in
water promoted by NaOH using a palladium-phosphinous acid
complex.11 Jesu´s et al. employed the palladium complex of
formula [PdCl2L2], where L was a crown-ether-containing
triarylphosphane ligand, to give the synthetically useful yields
of the Hiyama reaction in water.12 Very recently, the fluoride-
free Hiyama reaction was reported using palladium salts and
oxime-derived palladacycles in concentrated aqueous sodium
hydroxide solution under heating at 120 °C in a pressure tube
or under microwave irradiation.13 Although the aqueous Hiyama
reaction has been developed with significant success, the ligands
and/or high temperature (often in a sealed tube) are generally
required. Herein, we report the development of a practical and
efficient set of conditions for the fluoride-free Hiyama reaction
Shengyin Shi and Yuhong Zhang*
Department of Chemistry, Zhejiang UniVersity, Hangzhou
310027, People’s Republic of China
ReceiVed April 24, 2007
Mild conditions have been developed to achieve the Pd-
(OAc)2-catalyzed fluoride-free cross-coupling between the
aryl bromides and arylsiloxanes in good to high yields in
aqueous medium. The success of the reactions requires the
presence of poly(ethylene glycol) (PEG) and 3 equiv of
sodium hydroxide. The product was easily separated with
ethyl ether extraction, and the catalytic system can be reused
eight times with high efficiency.
(7) (a) Hiyama, T. In Metal-Catalyzed Cross-Coupling Reactions;
Diederich, F., Stang, P. J., Eds.; Wiley-VCH: Weinheim, Germany, 1998;
Chapter 10. (b) Hiyama, T. J. Organomet. Chem. 2002, 653, 58. (c)
Denmark, S. E.; Sweis. R. F. In Metal-Catalyzed Cross-Coupling Reactions,
2nd ed.; de Meijere, A., Diederich, F., Eds.; Wiley-VCH: Weinheim,
Germany 2004; Chapter 4. (d) Handy, C. J.; Manoso, A. S.; McElroy, W.
T.; Seganish, W. M.; DeShong, P. Tetrahedron 2005, 61, 12201. (e)
Denmark, S. E.; Sweis, R. F. Acc. Chem. Res. 2002, 35, 835. (f) Denmark,
S. E.; Ober, M. H. Aldrichimica Acta 2003, 36, 75.
(8) (a) Hatanaka, Y.; Hiyama, T. J. Org. Chem. 1988, 53, 918. (b) Pierrat,
P.; Gros, P.; Fort, Y. Org. Lett. 2005, 7, 697. (c) Jayanth, E. T.; Jeganmohan,
M.; Ching, C.-H. Org. Lett. 2005, 7, 2921. (d) Hatanaka, Y.; Fukushima,
S.; Hiyama, T. Chem. Lett. 1989, 1711. (e) Gouda, K.-i.; Hagiwara, E.;
Hatanaka, Y.; Hiyama, T. J. Org. Chem. 1996, 61, 7232. (f) Mowery, M.
E.; DeShong, P. J. Org. Chem. 1999, 64, 3266. (g) Denmark, S. E.; Sweis,
R. F. Org. Lett. 2002, 4, 3771. (h) Hirabayashi, K.; Mori, A.; Kawashima,
J.; Suguro, M.; Nishihara, Y.; Hiyama, T. J. Org. Chem. 2000, 65, 5342.
(i) Denmark, S. E.; Baird, J. D. Org. Lett. 2004, 6, 3649. (j) Denmark, S.
E.; Ober, M. H. Org. Lett. 2003, 5, 1357. (k) Riggleman, S.; Deshong, P.
J. Org. Chem. 2003, 68, 8106. (l) Sahoo, A. K.; Oda, T.; Nakao, Y.; Hiyama,
T. AdV. Synth. Catal. 2004, 346, 1715. (m) Nokami, T.; Tomida, Y.; Kamei,
T.; Itami, K.; Yoshida, J.-i. Org. Lett. 2006, 8, 729. (n) Seganish, W. M.;
DeShong, P. J. Org. Chem. 2004, 69, 1137.
The palladium-catalyzed cross-coupling transformations be-
tween aryl halides and organometallic species constitute the most
efficient methodologies for the construction of biaryl subunits1-3
and are extensively used in the synthesis of pharmaceutical
intermediates, bioactive molecules, and functional materials.4
Among the various organometallic coupling partners, the
organoboranes (Suzuki)5 and organostannanes (Stille)6 are the
most routinely employed reagents because of their high reactiv-
ity and wide functional group tolerances. However, the toxicity
of organostannanes and the difficulty of purification of orga-
(1) For recent reviews, see: (a) Handbook of Organopalladium Chemistry
for Organic Synthesis; Negishi, E.-I., de Meijere, A., Eds.; Wiley: New
York, 2002. (b) Transition Metals for Organic Synthesis: Building Block
and Fine Chemicals, 2nd ed.; Beller, M., Bolm, C., Eds.; Wiley-VCH:
Weinheim, Germany, 2004.
(2) Selected papers on the Kumada reaction: (a) Bumagin, N. A.;
Luzikova, E. V. J. Organomet. Chem. 1997, 532, 271. (b) Fechtenkoetter,
A.; Saalwaechter, K.; Harbison, M. A.; Muellen, K.; Spiess, H. W. Angew.
Chem., Int. Ed. 1999, 38, 3039. (c) Huang, J.; Nolan, S. P. J. Am. Chem.
Soc. 1999, 121, 9889.
(3) Selected papers on the Negishi reaction: (a) Jutand, A.; Mosleh, A.
Synlett 1993, 568. (b) Jutand, A.; Mosleh, A. J. Org. Chem. 1997, 62, 261.
(c) Hossain, K. M.; Shibata, T.; Takagi, K. Synlett 2000, 1137.
(4) (a) Nicolaou, K. C.; Boddy, C. N. C.; Brase, S.; Winssinger, N.
Angew. Chem., Int. Ed. 1999, 38, 2096. (b) Pu, L. Chem. ReV. 1998, 98,
2405. (c) Hassan, J.; Sevignon, M.; Gozzi, C.; Schulz, E.; Lemaire, M.
Chem. ReV. 2002, 102, 1359. (d) Littke, A. F.; Fu, G. C. Angew. Chem.,
Int. Ed. 2002, 41, 4176.
(9) Silicon compound base on aryl trialkoxysilanes: (a) Tamao, K.;
Kobayashi, K.; Ito, Y. Tetrahedron Lett. 1989, 30, 6051. (b) Shibata, K.;
Miyazawa, K.; Goto, Y. Chem. Commun. 1997, 1309. (c) Mowery, M. E.;
DeShong, P. J. Org. Chem. 1999, 64, 1684. (d) Mowery, M. E.; DeShong,
P. Org. Lett. 1999, 1, 2137. (e) Lee, H. M.; Nolan, S. P. Org. Lett. 2000,
2, 2053. (f) Correia, R.; DeShong, P. J. Org. Chem. 2001, 66, 7159. (g)
McElroy, W. T.; DeShong, P. Org. Lett. 2003, 5, 4779. (h) Wolf, C.;
Lerebours, R.; Tanzini, E. H. Synthesis 2003, 2069. (i) Seganish, W. M.;
DeShong, P. J. Org. Chem. 2004, 69, 6790. (j) Li, J.-H.; Deng, C.-L.; Liu,
W.-J.; Xie, Y.-X. Synthesis 2005, 3039. (k) Murata, M.; Yoshida, S.; Nirei,
S.-i.; Watanabe, S.; Masuda, Y. Synlett 2006, 118. (l) Mino, T.; Shirae, Y.;
Saito, T.; Sakamoto, M.; Fujita, T. J. Org. Chem. 2006, 71, 9499. (m) Ju,
J.; Nam, H.; Jung, H. M.; Lee, S. Tetrahedron Lett. 2006, 47, 8673.
(10) (a) Hagiwara, E.; Gouda, K.; Hatanaka, Y.; Hiyama, T. Tetrahedron
Lett. 1997, 38, 439. (b) Murata, M.; Shimazaki, R.; Watanabe, S.; Masuda,
Y. Synthesis 2001, 2231.
(5) Selected papers on the Suzuki reaction: (a) Miyaura, N.; Suzuki, A.
Chem. ReV. 1995, 95, 2457. (b) Suzuki, A. J. Organomet. Chem. 1999,
576, 147. (c) Miao, W.; Chan, T. H. Org. Lett. 2003, 5, 5003. (d) Xiao,
J.-C.; Shreeve, J. M. J. Org. Chem. 2005, 70, 3072.
(11) Wolf, C.; Lerebours, R. Org. Lett. 2004, 6, 1147.
(6) Selected papers on the Stille reaction: (a) Milstein, D.; Stille, J. K.
J. Am. Chem. Soc. 1979, 101, 4992. (b) Stille, J. K. Angew. Chem., Int. Ed.
Engl. 1986, 25, 508. (c) Handy, S. T.; Zhang, X. Org. Lett. 2001, 3, 233.
(d) Espinet, P.; Echavarren, A. M. Angew. Chem., Int. Ed. 2004, 43, 4704.
(12) Gordillo, A.; Jesu´s, E.; Lo´pez-Mardomingo, C. Org. Lett. 2006, 8,
3517.
(13) (a) Alacid, E.; Najera, C. AdV. Synth. Catal. 2006, 348, 945. (b)
Alacid, E.; Najera, C. AdV. Synth. Catal. 2006, 348, 2085.
10.1021/jo070855v CCC: $37.00 © 2007 American Chemical Society
Published on Web 06/22/2007
J. Org. Chem. 2007, 72, 5927-5930
5927