10.1002/anie.201809679
Angewandte Chemie International Edition
COMMUNICATION
[11] a) H.-B. Zhao, Z.-J. Liu, J. Song, H.-C. Xu, Angew. Chem. Int. Ed. 2017,
56, 12732–12735; Angew. Chem. 2017, 129, 12906–12909; b) H.-B.
Zhao, Z.-W. Hou, Z.-J. Liu, Z.-F. Zhou, J. Song, H.-C. Xu, Angew.
Chem. Int. Ed. 2017, 56, 587–590; Angew. Chem. 2017, 129, 602–605.
[12] a) B. A. Frontana-Uribe, R. D. Little, J. G. Ibanez, A. Palma, R.
Vasquez-Medrano, Green Chem. 2010, 12, 2099–2119; b) M. J.
Llorente, B. H. Nguyen, C. P. Kubiak, K. D. Moeller, J. Am. Chem. Soc.
2016, 138, 15110-15113.
Acknowledgements
Financial
support
of
this
research
from
MOST
(2016YFA0204100), NSFC (21672178) and Fundamental
Research Funds for the Central Universities.
Keywords: electrochemistry • paired electrolysis • radicals •
oximes • heterocycles
[13] a) T. Shono, Y. Matsumura, K. Tsubata, T. Kamada, K. Kishi, J. Org.
Chem. 1989, 54, 2249–2251; b) M. F. Hartmer, S. R. Waldvogel, Chem.
Commun. 2015, 51, 16346–16348.
[1]
[2]
R. Hili, A. K. Yudin, Nat. Chem. Biol. 2006, 2, 284–287.
[14] a) T. Nakanishi, M. Suzuki, A. Saimoto, T. Kabasawa, J. Nat. Prod.
1999, 62, 864–867; b) N. Stevens, N. O’Connor, H. Vishwasrao, D.
Samaroo, E. R. Kandel, D. L. Akins, C. M. Drain, N. J. Turro, J. Am.
Chem. Soc. 2008, 130, 7182–7183; c) B. Clement, M. Weide, U.
Wolschendorf, I. Kock, Angew. Chem. Int. Ed. 2005, 44, 635–638;
Angew. Chem. 2005, 117, 641–645.
a) J. R. Chen, X. Q. Hu, L. Q. Lu, W. J. Xiao, Chem. Soc. Rev. 2016,
45, 2044–2056; b) T. Xiong, Q. Zhang, Chem. Soc. Rev. 2016, 45,
3069–3087; c) M. D. Kärkäs, ACS Catal. 2017, 7, 4999–5022; d) Y.
Zhao, W. Xia, Chem. Soc. Rev. 2018, 47, 2591–2608; e) S. Z. Zard,
Chem. Soc. Rev. 2008, 37, 1603–1618.
[3]
[4]
J. C. Walton, Molecules 2016, 21, 660–684.
[15] a) J. E. Nutting, M. Rafiee, S. S. Stahl, Chem. Rev. 2018, 118, 4834–
4885; b) A. Das, S. S. Stahl, Angew. Chem. Int. Ed. 2017, 56, 8892–
8897; Angew. Chem. 2017, 129, 9018–9023; c) X.-Y. Qian, S.-Q. Li, J.
Song, H.-C. Xu, ACS Catal. 2017, 2730–2734; d) F. Wang, M. Rafiee,
S. S. Stahl, Angew. Chem. Int. Ed. 2018, 57, 6686-6690; Angew. Chem.
2018, 130, 6796–6800; e) C. Li, C. C. Zeng, L. M. Hu, F. L. Yang, S. J.
Yoo, R. D. Little, Electrochim. Acta 2013, 114, 560–566; f) J. C. Siu, G.
S. Sauer, A. Saha, R. L. Macey, N. Fu, T. Chauvire, K. M. Lancaster, S.
Lin, J. Am. Chem. Soc. 2018, DOI: 10.1021/jacs.8b06744.
D. A. Pratt, J. A. Blake, P. Mulder, J. C. Walton, H.-G. Korth, K. U.
Ingold, J. Am. Chem. Soc. 2004, 126, 10667–10675.
[5]
a) B. Han, X. L. Yang, R. Fang, W. Yu, C. Wang, X. Y. Duan, S. Liu,
Angew. Chem. Int. Ed. 2012, 51, 8816–8820; b) X. X. Peng, Y. J. Deng,
X. L. Yang, L. Zhang, W. Yu, B. Han, Org. Lett. 2014, 16, 4650–4653;
c) X.-X. Peng, D. Wei, W.-J. Han, F. Chen, W. Yu, B. Han, ACS Catal.
2017, 7830–7834.
[6]
[7]
F. Chen, X. Huang, X. Li, T. Shen, M. Zou, N. Jiao, Angew. Chem. Int.
Ed. 2014, 53, 10495-10499; Angew. Chem. 2014, 126, 10663–10667.
a) J. Davies, S. G. Booth, S. Essafi, R. A. Dryfe, D. Leonori, Angew.
Chem. Int. Ed. 2015, 54, 14017-14021; Angew. Chem. 2015,
127,14223–14227; b) H. Jiang, A. Studer, Angew. Chem. Int. Ed. 2017,
56, 12273–12276; Angew. Chem. 2017, 129,12441–12444.
a) H. Jiang, X. D. An, K. Tong, T. Y. Zheng, Y. Zhang, S. Y. Yu, Angew.
Chem. Int. Ed. 2015, 54, 4055–4059; Angew. Chem. 2015, 127, 4127–
4131; b) F. Portela-Cubillo, J. S. Scott, J. C. Walton, J. Org. Chem.
2008, 73, 5558–5565.
[16] The Pb concentration in the reaction solution after electrolysis and in
the purified product
3 was determined using atomic absorption
spectroscopy (AAS) to be 1.9 ppm and 350 ppm, respectively.
[17] E. G. Mackay, A. Studer, Chem. Eur. J. 2016, 22, 13455–13458.
[18] a) L.-C. Campeau, S. Rousseaux, K. Fagnou, J. Am. Chem. Soc. 2005,
127, 18020–18021; b) B. Xiao, Z.-J. Liu, L. Liu, Y. Fu, J. Am. Chem.
Soc. 2013, 135, 616–619.
[19] The oxidation of oxime 1 by TEMPO+ has also been confirmed by cyclic
voltammetry (Figures S1 and S2). Under galvanostatic conditions in the
presence of KOH, it is also possible the oxime 1 is oxidized directed on
the electrode, especially considering the low oxidation potential of the
conjugate base of the oxime (Figure S3). An example of iminoxy radical
formation via direct electrolysis: H.-L. Xiao, C.-C. Zeng, H.-Y. Tian, L.-M.
Hu, R. D. Little, J. Electroanal. Chem. 2014, 727, 120–124.
[8]
[9]
a) R. Francke, R. D. Little, Chem. Soc. Rev. 2014, 43, 2492–2521; b) M.
Yan, Y. Kawamata, P. S. Baran, Chem. Rev. 2017, 117, 13230–13319;
c) E. J. Horn, B. R. Rosen, P. S. Baran, ACS Cent. Sci. 2016, 2, 302–
308; d) A. Wiebe, T. Gieshoff, S. Möhle, E. Rodrigo, M. Zirbes, S. R.
Waldvogel, Angew. Chem. Int. Ed. 2018, 57, 5594–5619; Angew.
Chem. 2018, 130, 5694–5721; e) S. Möhle, M. Zirbes, E. Rodrigo, T.
Gieshoff, A. Wiebe, S. R. Waldvogel, Angew. Chem. Int. Ed. 2018, 57,
6018–6041; Angew. Chem. 2018, 130, 6124–6149; f) Q. L. Yang, P.
Fang, T. S. Mei, Chin. J. Chem. 2018, 36, 338–352; g) S. R. Waldvogel,
S. Lips, M. Selt, B. Riehl, C. J. Kampf, Chem. Rev. 2018, DOI: 118,
6706-6765; h) J. Yoshida, K. Kataoka, R. Horcajada, A. Nagaki, Chem.
Rev. 2008, 108, 2265–2299; i) N. Sauermann, T. H. Meyer, Y. Qiu, L.
Ackermann, ACS Catal. 2018, 8, 7086-7103; j) S. Tang, Y. Liu, A. Lei,
Chem 2018, 4, 27–45; k) M. D. Kärkäs, Chem. Soc. Rev. 2018, 47,
5786–5865; l) Y. Jiang, K. Xu, C. Zeng, Chem. Rev. 2018, 118, 4485–
4540.
[20] The cyclic voltammetry experiments (Figure S3) indicated that a small
portion of oxime 1 was deprotonated by KOH in H2O/MeCN (1:1),
suggesting that the pKa of 1 in the mixed solvent is close to that of H2O.
[21] Density functional theory (DFT)-based calculations (M06/2X) suggested
the cyclization of the iminoxyl radical to form III was endergonic with ∆G
= 11.9 kcal mol−1
.
[10] Selected recent examples: a) T. Morofuji, A. Shimizu, J. Yoshida, J. Am.
Chem. Soc. 2015, 137, 9816–9819; b) S. Zhang, L. Li, M. Xue, R.
Zhang, K. Xu, C. Zeng, Org. Lett. 2018, 20, 3443–3446; c) J. Chen, W.
Q. Yan, C. M. Lam, C. C. Zeng, L. M. Hu, R. D. Little, Org. Lett. 2015,
17, 986–989; d) L. Li, S. Luo, Org. Lett. 2018, 20, 1324–1327; e) X. L.
Gao, P. Wang, L. Zeng, S. Tang, A. W. Lei, J. Am. Chem. Soc. 2018,
140, 4195–4199; f) N. Sauermann, R. Mei, L. Ackermann, Angew.
Chem. Int. Ed. 2018, 57, 5090–5094; Angew. Chem. 2018, 130, 5184–
5188; g) N. Fu, G. S. Sauer, A. Saha, A. Loo, S. Lin, Science 2017, 357,
575–579; h) Z.-W. Hou, H. Yan, J.-S. Song, H.-C. Xu, Chin. J. Chem.
2018, 36, 909-915; i) P. Xiong, H.-H. Xu, H.-C. Xu, J. Am. Chem. Soc.
2017, 139, 2956-2959; j) Z. W. Hou, Z. Y. Mao, H. B. Zhao, Y. Y.
Melcamu, X. Lu, J. Song, H.-C. Xu, Angew. Chem. Int. Ed. 2016, 55,
9168–9172; Angew. Chem. 2016, 128, 9314–9318.
This article is protected by copyright. All rights reserved.