ORGANIC
LETTERS
sp2-sp3 Hybridized Mixed Diboron:
Synthesis, Characterization, and
Copper-Catalyzed ꢀ-Boration of
r,ꢀ-Unsaturated Conjugated
Compounds
2009
Vol. 11, No. 15
3478-3481
Ming Gao, Steven B. Thorpe, and Webster L. Santos*
Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24061
santosw@Vt.edu
Received June 16, 2009
ABSTRACT
A novel sp2-sp3 hybridized mixed diboron and its reactivity on the copper-catalyzed ꢀ-boration of r,ꢀ-unsaturated conjugated compounds
to afford the corresponding ꢀ-borated compounds is reported. The presence of sp3-hybridized boron provides a mild ꢀ-boration condition in
the absence of phosphine and base additives. Finally, our investigations demonstrate that the sp2-hybridized boron of the mixed diboron is
selectively transferred to the ꢀ-carbon of conjugated substrates.
Organoboron compounds are important in medicine be-
cause of their diverse biological activities and in organic
synthesis due to their versatility as synthetic intermedi-
ates.1,2 One of the important methods for the synthesis of
organoboron derivatives is the transition-metal-catalyzed
addition of diboron reagents to R,ꢀ-unsaturated carbonyl
compounds. These boration reactions have been extensively
studied using platinum,3 rhodium,4 nickel,5 and copper6
catalyst systems. While these reactions provide a convenient
method for the installation of boron, some suffer from
limitations such as high catalyst loading, narrow substrate
scope, and high reaction temperature. In the copper-catalyzed
ꢀ-boration of R,ꢀ-unsaturated carbonyl compounds, Yun and
co-workers reported an improved procedure and a dramatic
rate acceleration in the presence of methanol.6d However,
additives such as phosphine ligand and base were still
(3) (a) Lawson, Y. G.; Lesley, M. J. G.; Marder, T. B.; Norman, N. C.;
Rice, C. R. Chem. Commun. 1997, 2051–2052. (b) Ali, H. A.; Goldberg,
I.; Srebnik, M. Organometallics 2001, 20, 3962–3965. (c) Bell, N. J.; Cox,
A. J.; Cameron, N. R.; Evans, J. S. O.; Marder, T. B.; Duin, M. A.; Elsevier,
C. J.; Baucherel, X.; Tulloch, A. A. D.; Tooze, R. P. Chem. Commun. 2004,
1854–1855.
(1) For reviews, see: (a) Boronic Acids-Preparation and Applications
in Organic Synthesis and Medicine; Hall, D. G., Ed.; Wiley-VCH:
Weinheim, Germany, 2005. (b) Beletskaya, I.; Moberg, C. Chem. ReV. 2006,
106, 2320–2354. (c) Beletskaya, I.; Moberg, C. Chem. ReV. 1999, 99, 3435–
3461. (d) Irvine, G. J.; Lesley, M. J. G.; Marder, T. B.; Norman, N. C.;
Rice, C. R.; Robins, E. G.; Roper, W. R.; Whittell, G. R.; Wright, L. J.
Chem. ReV. 1998, 98, 2685–2722. (e) Miyaura, N.; Suzuki, A. Chem. ReV.
(4) Kabalka, G. W.; Das, B. C.; Das, S. Tetrahedron Lett. 2002, 43,
2323–2325.
(5) Hirano, K.; Yorimitsu, H.; Oshima, K. Org. Lett. 2007, 9, 5031–
5033.
(6) (a) Ito, H.; Yamanaka, H.; Tateiwa, J.; Hosomi, A. Tetrahedron Lett.
2000, 41, 6821–6825. (b) Takahashi, K.; Ishiyama, T.; Miyaura, N. Chem.
Lett. 2000, 982–983. (c) Takahashi, K.; Ishiyama, T.; Miyaura, N. J.
Organomet. Chem. 2001, 625, 47–53. (d) Mun, S.; Yun, J. Org. Lett. 2006,
8, 4887–4889. (e) Lee, J.-E.; Kwon, J.; Yun, J. Chem. Commun. 2008, 733–
734. (f) Lee, J. E.; Yun, J. Angew. Chem., Int. Ed. 2008, 47, 145–147. (g)
Sim, H.-S.; Feng, X.; Yun, J. Chem. Eur. J. 2009, 15, 1939–1943.
1995, 95, 2457–2483
.
(2) Irving, A. M.; Vogels, C. M.; Nikolcheva, L. G.; Edwards, J. P.;
He, X.-F.; Hamilton, M. G.; Baerlocher, M. O.; Baerlocher, F. J.; Decken,
A.; Westcott, S. A. New J. Chem. 2003, 27, 1419–1424
.
10.1021/ol901359n CCC: $40.75
Published on Web 07/13/2009
2009 American Chemical Society