Struct Chem
12. Arisawa M, Theeraladanon C, Nishida A, Nakagawa M (2001)
Tetrahedron Lett 42:8029–8033
13. Cho CS, Kim JS, Oh BH, Kim TJ, Shim CS (2000) Tetrahedron
56:7747–7750
14. Nedeltchev AK, Han H, Bhowmik PK (2010) J Polym Sci A
Polym Chem 48:4611–4620
15. Nedeltchev AK, Han H, Browmik PK (2010) Tetrahedron
66:9319–9326
NMR signals of tetrahydroquinolines studied. Other point
to be detached in this work is that the values of NMR
chemical displacement obtained with the theoretical level
B3LYP/cc-pVDZ allows the association of a computa-
tional cost not so high and an accurate precision of
results obtained.
16. da Silva BHST, Martins LM, da Silva-Filho LC (2012) Synlett
23:1973–1977
17. Frenhe M, da Silva-Filho LC (2011) Orbital Eletronic J Chem
3:1–14
Conclusion
18. da Silva-Filho LC, Lacerda V Jr, Constantino MG, da Silva GVJ
(2008) Synthesis 16:2527–2536
Based on the results mentioned above, we can conclude
that the theoretical data showed an excellent correlation
with the experimental data and reinforce the structural
elucidation and assignments of all NMR signals for
Povarov adducts treated in this work. For these derivatives,
the experimental analyses and the theoretical model
adopted were sufficient to obtain a good description of its
structures, and these results can be used to assign the
structure of various others tetrahydroquinoline derivatives
synthetized by Povarov reaction. The theory-level B3LYP/
cc-pVDZ proved to be an effective model to perform the
´
19. Vicente-Garcıa E, Ramon R, Lavilla
14:2237–2246
R (2011) Synthesis
´
20. Vicente-Garcıa E, Ramon R, Preciado S, Lavilla R (2011) Beil J
Org Chem 7:980–987
21. Khan AT, Das DK, Khan M (2011) Tetrahedron Lett 51:
4539–4542
22. Smith CD, Gavrilyuk JI, Lough AJ, Batey RA (2010) J Org Chem
75:702–715
23. Yu Y, Zhou J, Yao Z, Xu F, Shen Q (2010) Heteroatom Chem
21:351–354
´
24. Vicente-Garcıa E, Catti F, Ramon R, Lavilla R (2010) Org Lett
12:860–863
25. Bello D, Ramon R, Lavilla R (2010) Curr Org Chem 14:332–356
1
calculation of the chemical shift of H and 13C-NMR.
´
26. Kouznetsov VV, Gomez CMM, Jaimes JHB (2010) J Heterocy-
clic Chem 47:1148–1152
Acknowledgments The authors would like to thank Fundac¸a˜o de
27. Guchait SK, Jadeja K, Madaan CA (2009) Tetrahedron 50:
6861–6865
`
Amparo a Pesquisa do Estado de Sa˜o Paulo (FAPESP) (Procs. N8
2010/18022-2; 2011/15186-7 and 2011/04006-8), Conselho Nacional
28. Liu A, Dagousset G, Masson G, Reailleau P, Zhu J (2009) J Am
Chem Soc 131:4598–4599
´
de Desenvolvimento Cientıfico e Tecnologico (CNPq), Coordenado-
ria de Aperfeic¸oamento de Pessoal do Nıvel Superior (CAPES), and
´
´
29. Khadem S, Udachin KA, Enright GD, Prakesch M, Arya P (2009)
Tetrahedron Lett 50:6661–6664
´
Pro-Reitoria de Pesquisa da UNESP (PROPe-UNESP) for their
financial support.
30. Sass DC, Heleno VCG, Soares ACF, Lopes JLC, Constantino
MG (2012) J Mol Struct 1008:24–28
31. Sebastiani D, Parrinello M (2001) J Phys Chem A 105:
1951–1958
References
32. Agrawal PK (1992) Phytochemistry 31:3307–3330
33. Abraham RJ (1999) Prog Nucl Magn Reson Spectrosc 35:85–152
34. Salles RC, Lacerda V Jr, Barbosa LR, Ito FM, de Lima DP, dos
Santos RB, Greco SJ, Neto AC, Castro EVR, Beatriz A (2012)
J Mol Struct 1007:191–195
35. Queiroz LHK Jr, Lacerda V Jr, dos Santos RB, Greco SJ, Neto
AC, Castro EVR (2011) Magn Reson Chem 49:140–146
36. Mauri F, Pfrommer BG, Louie SG (1996) Phys Rev Lett
77:5300–5303
1. Johnson JV, Rauckman BS, Baccanari DP (1989) J Med Chem
32:1942–1949
2. Carling RW, Leeson PD, Moseley AM, Baker RA, Foster C,
Grimwood S, Kemp JA, Marshall GR (1992) J Med Chem
35:1942–1953
3. Lesson PD, Carling RW, Moore KW, Moseley AM, Smith JD,
Stevenson G, Chan T, Baker R, Foster AC, Grimwood S, Kemp
JA, Marshall GR, Hoogsteen K (1992) J Med Chem 35:
1954–1968
4. Carling RW, Leeson PD, Moseley AM, Smith JD, Saywell K,
Trickbank MD, Kemp JA, Marshall GR, Foster AC (1993) Bio-
org Med Chem Lett 3:65–70
37. Dunning TH Jr (1989) J Chem Phys 90:1007–1023
´
38. Cimino P, Gomez-Paloma L, Duca D, Riccio R, Bifulco G (2004)
Mag Reson Chem 42:S26–S33
39. Becke AD (1997) J Chem Phys 107:8554–8560
5. Ramesh M, Mohan PS, Shanmugan PA (1984) Tetrahedron
40:4041–4049
6. Nesterova IN, Alekseeva LM, Golovira SM, Granik VG (1995)
Khim-Farm Zh 29:31
7. Yamada N, Kadowaki S, Takahashi K, Umezu K (1992) Biochem
Pharmacol 44:1211–1213
8. Faber K, Stueckler H, Kappe T (1984) Heterocycl Chem
21:1177–1181
9. Akhmed Khodzhaeva KS, Bessonova IA (1982) Dokl Akad Nauk
Uzh SSR 34–36 (Russ.); (1983) Chem Abstr 98:83727q
10. Mohanmed EA (1994) Chem Pap 48:261–267
11. Dumounchel S, Mongin F, Trecourt F (2003) Tetrahedron Lett
44:2033–2035
40. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA,
Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson
GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF,
Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K,
Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao
O, Nakai H, Vreven T, Montgomery Jr. JA, Peralta JE, Ogliaro F,
Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN,
Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC,
Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M,
Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts
R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C,
Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth
GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas
123