1
62
Synlett
M. Baumann, I. R. Baxendale
Letter
the relative stereochemistry of these entities was estab-
lished using NOESY NMR spectroscopy confirming the ex-
pected cis relationship (Figure 4).
(3) (a) O’Brien, C. Chem. Rev. 1964, 64, 81. (b) Neber, P. W.; v.
Friedolsheim, A. Ann. 1926, 449, 109. (c) Neber, P. W.; Uber, A.
Ann. 1928, 467, 52. (d) Hatch, M. J.; Cram, D. J. J. Am. Chem. Soc.
1953, 75, 38.
(
4) Pearson, W. H.; Lian, B. W. In Comprehensive Heterocyclic Chem-
istry II; Vol. 1a; Katritzky, A. R.; Rees, C. W.; Scriven, E. F. V.,
Eds.; Pergamon Press: Oxford, 1996, 1–60.
NOESY
H
H
N
N
H
H
(5) (a) Escolano, C.; Duque, M. D.; Vazquez, S. Curr. Org. Chem. 2007,
1
1, 741. (b) Padwa, A.; Carlsen, H. J. Nitrile Ylides and Nitrenes
N
N
F3C
H H
from 2H-Azirines, In Reactive Intermediates; Vol. 2;
Abramovitch, R. A., Ed.; Plenum Press: New York/London, 1982,
55–121.
9
a, 89%
9b, 92%
H
N
(6) (a) Baumann, M.; Baxendale, I. R.; Ley, S. V. Synlett 2010, 749.
(b) Baumann, M.; Baxendale, I. R.; Kirschning, A.; Ley, S. V.;
N
MeO
Wegner, J. Heterocycles 2010, 82, 1297. (c) Baumann, M.;
Baxendale, I. R.; Kuratli, C.; Ley, S. V.; Martin, R. E.; Schneider, J.
ACS Comb. Sci. 2011, 13, 405. (d) Battilocchio, C.; Baumann, M.;
Baxendale, I. R.; Biava, M.; Kitching, M. O.; Ley, S. V.; Martin, R.
E.; Ohnmacht, S. A.; Tappin, N. D. C. Synthesis 2012, 44, 635.
7) (a) Baumann, M.; Rodriguez-Garcia, A. M.; Baxendale, I. R. Org.
Biomol. Chem. 2015, 13, 4231. (b) Baumann, M.; Baxendale, I. R.;
Ley, S. V.; Smith, C. D.; Tranmer, G. K. Org. Lett. 2006, 8, 5231.
(c) Smith, C. J.; Iglesias-Siguenza, J.; Baxendale, I. R.; Ley, S. V.
Org. Biomol. Chem. 2007, 5, 2758. (d) Baxendale, I. R.; Ley, S. V.;
Mansfield, A. C.; Smith, C. D. Angew. Chem. Int. Ed. 2009, 48,
9c, 90%
Figure 4 Disubstituted aziridines 9a–c prepared in flow
In summary, we have developed a simple, yet robust
flow process generating a selection of 2H-azirines from
(
15
readily accessible oxime precursors. The value of these
species was furthermore demonstrated through a selection
of telescoped reaction sequences showcasing the rapid for-
mation of a number of aziridine derivatives accomplished
by reaction with hydride, trifluoromethyl, and nitrile nucle-
ophiles. Importantly, these structures were obtained in
high yield and with exclusive cis diastereoselectivity pre-
senting opportunities towards further exploitation of this
versatile methodology.
4017. (e) Guetzoyan, L.; Nikbin, N.; Baxendale, I. R.; Ley, S. V.
Chem. Sci. 2013, 4, 764.
(
8) (a) Sweeney, J. B. Chem. Soc. Rev. 2002, 31, 247. (b) Dahanukar,
V. H.; Zavialov, I. A. Curr. Opin. Drug Discovery Dev. 2002, 5, 918.
9) Venturoni, F.; Nikbin, B.; Ley, S. V.; Baxendale, I. R. Org. Biomol.
Chem. 2010, 8, 1798.
(
(
(
(
(
(
10) Silica-supported pyridine (Py·SiO ) was purchased from Silicy-
2
cle (Quebec, Canada). Particle size: 40–63 μm, loading: 1.39
mmol/g.
11) Fluorinated Heterocyclic Compounds: Synthesis, Chemistry, and
Applications; Petrov, V. A., Ed.; John Wiley and Sons: Hoboken,
Acknowledgment
We gratefully acknowledge financial support from the Royal Society
(to MB and IRB). Furthermore we are grateful to Dr Dmitry Yufit and
2
009.
12) (a) Baumann, M.; Baxendale, I. R.; Ley, S. V. Synlett 2008, 2111.
b) Gustafsson, T.; Gilmoure, R.; Seeberger, P. H. Chem. Commun.
008, 3022.
Dr Andrei Batsanov (both Department of Chemistry, University of
Durham) for solving the X-ray crystal structures and Dr Juan A. Aguilar
(
2
(Department of Chemistry, University of Durham) for assistance with
HOESY NMR experiments.
13) (a) Baumann, M.; Baxendale, I. R.; Martin, L. J.; Ley, S. V. Tetrahe-
dron 2009, 65, 6611. (b) Amii, H.; Nagaki, A.; Yoshida, J.-I. Beil-
stein J. Org. Chem. 2013, 9, 2793.
Supporting Information
14) For selected examples highlighting hydrogenation reactions via
TM
the H-Cube system, please see: (a) Saaby, S.; Knudsen, K. R.;
Supporting information for this article is available online at
http://dx.doi.org/10.1055/s-0035-1560391.
Ladlow, M.; Ley, S. V. Chem. Commun. 2005, 2909.
S
u
p
p
ortioIgnfrm oaitn
S
u
p
p
ortioIgnfrm oaitn
(b) Franckevicius, V.; Knudsen, K. R.; Ladlow, M.; Longbottom,
D. A.; Ley, S. V. Synlett 2006, 889. (c) Baumann, M.; Baxendale, I.
R.; Hornung, C. H.; Ley, S. V.; Rojo, M. V.; Roper, K. A. Molecules
References and Notes
2014, 19, 9736; see also ref. 6a.
(
15) Typical Flow Procedure for the Synthesis of 2H-Azirines
Using a Vapourtec E-Series flow system, two streams containing
the oxime substrate (4, 0.1 M MeCN, 1.0 equiv; stream A) and
(
1) (a) Klebnikov, A. F.; Novikov, M. S. Tetrahedron 2013, 69, 3363.
b) Bergmeier, S. C.; Lapinsky, D. J. Prog. Heterocycl. Chem. 2009,
1, 69. (c) Palacios, F.; Ochoa de Retana, A. M.; de Marigorta, E.
M.; de los Santos, J. M. Org. Prep. Proced. Int. 2002, 34, 219.
d) Palacios, F.; Ochoa de Retana, A. M.; de Marigorta, E. M.; de
(
2
Et N (1.2 equiv; 0.3 mL/min; stream A) and MsCl (0.12 M MeCN,
3
1.2 equiv; 0.3 mL/min; stream B) were mixed in a T-piece prior
(
to entering a tubular flow coil (10 mL volume, 40 °C) in which
the mesylation occurred. The exiting flow stream was then
directed into an Omnifit glass column (10 mm i.d., 150 mm
length) filled with silica supported pyridine (2.5 g, 1.39
mmol/g loading) and silica gel (1 g) that was maintained at
ambient temperature. After exiting this column the crude reac-
tion mixture passed a backpressure regulator (100 psi) before
being collected. Final purification could be achieved via silica
los Santos, J. M. Eur. J. Org. Chem. 2001, 2401. (e) Padwa, A. Adv.
Heterocycl. Chem. 2010, 99, 1.
2) (a) Cludius-Brandt, S.; Kupracz, L.; Kirschning, A. Beilstein J. Org.
Chem. 2013, 9, 1745. (b) Bou-Hamdan, F. R.; Levesque, F.;
O’Brien, A. G.; Seeberger, P. H. Beilstein J. Org. Chem. 2011, 7,
(
10
1124.
©
Georg Thieme Verlag Stuttgart · New York — Synlett 2016, 27, 159–163